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Abstract

I study a general model of repeated interactions between long-run players
who have no probabilistic beliefs about the environment in which future in-
teractions will take place. I introduce a notion of equilibrium, where at each
history players minimise their regret from forgoing an alternative strategy
under the worst-case sequence of future games, taking as given the strate-
gies of other players. I derive a recursive characterisation of equilibrium
outcomes for fixed discounting, as well as a folk theorem. I demonstrate
the tractability of the characterisation in applications to risk-sharing and
partnership games.

1 Introduction

Many economic interactions take place in environments that evolve over time.
The leading framework for studying dynamic incentives in these settings is the
stochastic game introduced by Shapley (1953). In a stochastic game agents play
a sequence of (stage) games, the evolution of which is governed by a commonly
known probability distribution that depends on past games and actions. The goal
of this paper is to explore incentives in the absence of such probabilistic considera-
tions, perhaps because the players are unsure about their probabilistic assessments,
or because they want to act in a robust manner.

I study a general model of repeated interactions with ambiguity about the
environment where they take place. In each period the players know the game
they are playing. They simultaneously take actions and then observe the actions
of others before moving to the next period. The set of games that might be played
in the future is common knowledge, but their relative likelihood is unknown until
the beginning of the next period when the game for that period is revealed. Hence,
players cannot maximise expected utility as in standard stochastic games. Instead,
I assume they minimise worst-case regret – an objective originating in Wald (1950)
and Savage (1951) that, despite its popularity in decision theory, has seen little use

*I thank seminar participants at University of Montreal. I gratefully acknowledge financial
support from the Social Sciences and Humanities Research Council (SSHRC).
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in dynamic problems with multiple agents. In particular, I introduce a notion of
Regret Perfect Equilibrium (RPE), where at each history players minimise their
payoff loss (regret) from forgoing an alternative strategy under the worst-case
sequence of future games, taking as given the strategies of other players. I restrict
players to one-shot deviations in order to avoid issues with the time inconsistency
of their preferences. This amounts to assuming that players recognise their own
time inconsistency and understand that their future selves are not committed to
strategies that are optimal from today’s perspective.

My work offers a tractable recursive characterisation of RPE outcomes. Tra-
ditionally, outcomes in stochastic games are expressed in payoff space. However,
payoffs here are contingent on the ambiguous sequence of games, making them
harder to interpret. My characterisation focuses on actions instead.

I start by obtaining an upper bound on the set of action profiles that can be
played in each game for any fixed discount factor. In a standard stochastic game ac-
tions can be supported only if the immediate gain from deviation is smaller than
the highest possible gap between continuation equilibrium payoffs (adjusted for
discounting). That is, an upper bound can be obtained by assuming the player is
rewarded for the equilibrium action with the highest continuation payoff and pun-
ished for a deviation with the lowest continuation payoff. Proposition 1 is a similar
result for the setting of this paper – it states that an action can be supported if the
deviation can be deterred by the largest gap in equilibrium continuation payoffs for
some environment of future games. While it is an intuitive extension of the result
for stochastic games to the worst-case objective, the argument is quite different.
In particular, it hinges on the possibility that a deviating player in a worst-case
environment regrets another deviation, and not the equilibrium strategy.

Theorem 1 uses the insight from Proposition 1 to provide an upper bound
on actions using ideas from Abreu, Pearce, and Stacchetti (1990). The bound is
computed through a recursive algorithm that starts from the largest possible payoff
gap and obtains progressively smaller gaps from actions that can be supported by
previous gaps. The computation is fairly straightforward; even a closed form can
be obtained in special cases. This contrasts stochastic games, where computation
can be much harder (Yeltekin, Cai, and Judd, 2017; Abreu, Brooks, and Sannikov,
2020).

The main result of the paper, Theorem 2, states that the algorithmic bound
can be attained in a RPE assuming the existence of games and actions that can
respectively approximate the payoffs of any game and action with arbitrary preci-
sion. Two caveats apply. First, the result requires an arbitrarily small increase in
the discount factor of each player. Then for any sequence of games there exist RPE
where any actions within the algorithmic bound are played along the sequence.
It is also possible to implement actions across different sequences of games with
some limitations – specific actions must be played in a measure-zero set of games
which form worst-case environments necessary for incentive provision.

Theorem 1 and Theorem 2 together provide a tractable algorithmic character-
isation of action profiles attainable in a RPE. This characterisation hinges on the
richness of actions: The proof of Theorem 2 constructs equilibria where players
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who deviate in a manner that maximises their payoff in the current period regret
another deviation that secures almost the same current payoff (and yields a higher
continuation payoff). Still, a similar method can be used to obtain results on gen-
eral action spaces. In the case of two actions, an exact characterisation of RPE
actions is possible, because a deviator must regret the equilibrium strategy and
vice versa. These actions form a lower bound on what is attainable with arbitrary
action spaces, while the upper bound from Theorem 1 is also valid in general.

The characterisation for fixed discounting is used to derive a folk theorem in
Proposition 4. As players become arbitrarily patient any action profiles can be
played, unlike standard folk theorems where individual rationality must be met.

This paper is inspired by the pioneering work of Carroll (2020) who introduced
the model of this paper and proposed a different solution concept – Ex-post Equi-
librium (XPE), where the strategies must form a Subgame Perfect Equilibrium
when restricted to any sequence of stage games. Carroll (2020) obtains a recur-
sive characterisation of XPE actions based on payoff gaps between the best and
worst equilibrium actions for each player. The analysis relies on a single long-run
player and public randomisation; neither is needed in my characterisation of RPE.
Krasikov and Lamba (2022) extend Carroll’s approach to characterise a subset of
equilibrium outcomes with multiple long-run players.

My characterisation bears some similarities to the payoff-gap recursions of
Carroll (2020) and Krasikov and Lamba (2022). This allows for a clear comparison
between XPE and RPE. XPE is more conservative because dynamic incentives
need to hold regardless of the environment of future games. On the other hand,
RPE is more permissive because incentives need to be provided only in a worst-
case environment of future games. Any XPE is a RPE, but the set of RPE may be
significantly larger. I discuss applications where XPE reduces to playing a Nash
Equilibrium in every stage game regardless of the discount factor, which is in stark
contrast with the RPE folk theorem mentioned above.

Game-theoretical solution concepts based on worst-case regret minimisation
have been proposed by Renou and Schlag (2010) and Halpern and Pass (2012).
Both papers focus on static games that are commonly known and assume play-
ers minimise regret under some worst-case strategy profiles by other players.1 In
contrast, I consider a dynamic environment of unknown games and a worst-case
scenario based on the sequence of future games.

Regret minimisation has also been studied as an objective in repeated play of
a fixed, but unknown game. This literature, surveyed in Cesa-Bianchi and Lugosi
(2006), obtains asymptotic bounds on players’ regret and studies whether regret-
minimising strategies converges to an equilibrium of the stage game.

The literature on robust mechanism design has also used worst-case regret min-
imisation in static settings (Hurwicz and Shapiro, 1978; Bergemann and Schlag,
2008; Guo and Schmaya, 2019, 2022). Dynamics have been notably absent (Car-
roll, 2019) but interest is growing: Libgober and Mu (2021) study the problem

1Halpern and Pass (2012) also consider a repeated prisoner’s dilemma but their solution
concept is based entirely on the normal form of the game, so there are no considerations for
dynamic optimality.
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of a monopolist seller who maximises his payoff (not regret) against a worst-case
stochastic process by which the buyer learns his value. Libgober and Mu (2022)
study the same problem in a setting where the seller cannot commit to a mecha-
nism.

The rest of the paper proceeds as follows. Section 2 formalises the model and
defines RPE. Section 3 studies the special case without ambiguity where only a
single stage game is possible. Section 4 contains the algorithmic upper bound on
equilibrium actions, and Section 5 shows how they can be attained in a RPE.
Section 6 contains results on general action spaces, the patient limit, as well as
discussion on the relationship between XPE and RPE. Section 7 concludes.

2 Model

There are n players indexed by i = 1, .., n playing a supergame consisting of an
infinite sequence of (stage) games. Each game belongs to a set Θ which is common
knowledge. An environment e is a sequence (e0, e1...) ∈ Θ∞ of games. At the onset
of the supergame the players know nothing about the environment.

The set of actions Ai available to each player i is the same across all games. Let
A := A1× ..×An denote the set of all action profiles and A−i = ×j ̸=iAj denote the
set of action profiles of players other than i. Player i’s payoff from action profile
a ∈ A in game θ ∈ Θ is denoted ui(a, θ). The maximum payoff gain for player i if
he deviates from this profile is

di(a, θ) = max
a′i∈Ai

ui(a
′
i, a−i, θ)− ui(a, θ).

An action ai ∈ Ai is an ε-best reply to a−i ∈ A−i in game θ if di(ai, a−i, θ) ≤ ε. If
ε = 0, the action is referred to simply as a best reply.

Assumption (A1). Θ and Ai are compact metric spaces and ui is continuous for
each i.

(A1) is a technical assumption maintained throughout the paper. It implies a
uniform bound M on the absolute value of payoffs.

2.1 Timing and histories

At the beginning of each period t = 0, 1, 2.. players observe the game θt ∈ Θ
that will be played at time t, but receive no information about the games they
will play from t + 1 onwards. Then players simultaneously choose actions. The
resulting action profile is revelead to each player, concluding the period. The set
of time-t histories is

H t := (Θ× A)t ×Θ

with representative element

ht = (θ0, a
0, θ1, a

1, .., θt−1, a
t−1, θt).

Notice that the space of initial histories is H0 = Θ.
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Example 1 (Risk-sharing (Kocherlakota, 1996)). There are two players indexed
by i = 1, 2. Each period players receive endowments θ1, θ2 ∈ [0, θ̄] which are
publicly observed. Then they simultaneously choose a proportion ai of their en-
dowment to give to the other player. Each player evaluates his net income with a
concave, strictly increasing utility function v : R+ → R with v(0) = 0.

In the language of this paper Θ is the set [0, θ̄]2 of all endowment realisations.
Action spaces are A1 = A2 = [0, 1] and

ui(ai, aj, θ) = v((1− ai)θi + ajθj),

where j ̸= i. ■

Example 2 (Partnership (McAdams, 2011)). Two players i = 1, 2 form a part-
nership. Each period productivity θi ∈ [θ, θ̄] for each player i is drawn and publicly
observed, where θ > 0. Then they simultaneously choose whether to work (w), or
shirk (s). Player i produces 2θi if he works, and 0 otherwise. Each player receives
half of the total output of the partnership less his cost of effort. Shirking has no
effort cost, while the cost of working c satisfies 2θ > c > θ̄.

In the language of the paper Θ = [θ, θ̄]2 and A1 = A2 = {w, s}. The payoffs are
given by the following matrix where player 1 chooses the row and player 2 chooses
the column.

w s
w θ1 + θ2 − c, θ1 + θ2 − c θ1 − c, θ1
s θ2, θ2 − c 0, 0

Table 1: Payoffs in the partnership game

The parametric assumptions imply that shirking is a dominant strategy and
(w,w) Pareto dominates (s, s) in every stage game. Thus, the supergame can also
be interpreted as a prisoner’s dilemma with varying stakes.

■

2.2 Strategies and payoffs

A (pure) strategy for player i is a map σi : ∪∞
t=0H

t → Ai. Let Σi denote the set of
strategies for player i. Given a strategy profile σ = (σ1, .., σn), let σ−i denote the
strategies of players other than i.

Suppose a strategy profile σ is played. Then the payoff of player i from history
ht depends on the continuation environment e ∈ Θ∞ of games to be played from
t+ 1 onwards as follows:

Ui(σ|ht, e) = (1− δ)

[
ui

(
σ(ht), θt

)
+

∞∑
s=0

δs+1ui

(
σ(ht+1+s), es

)]
,

where ht+1+s = (ht+s, σ(ht+s), es) for all s ≥ 0. The discount factor δ ∈ (0, 1) is
common to all players.
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It will be useful to shorten the notation Ui(σ|ht, e) by appending θt, the last
element of ht, to the continuation environment e. For instance, player i’s pay-
off from an initial history h0 = θ under continuation environment e is denoted
Ui(σ|e′), where e′ = (θ, e0, e1, ..). A related situation arises when a time-t history
ht and a continuation environment e from t + 1 have been fixed, but the interest
is in player i’s continuation payoff from t+1 after some action profile at is played
at time t . This payoff is written as Ui(σ|ht, at, e).

2.3 Equilibrium

Unlike in standard stochastic games, the objective of the players is not to maximise
payoff, but to minimise worst-case regret. Fix a history ht and a continuation
environment e ∈ Θ∞ of games to be played from period t + 1 onwards. Consider
a strategy profile σ. The regret of player i from strategy σi is

Ri(σ|ht, e) = sup
σd
i ∈Σd

i (σi,ht)

Ui(σ
d
i , σ−i|ht, e)− Ui(σ|ht, e).

This regret is the difference between the best payoff i could obtain from an alter-
native strategy σd

i and the payoff from σi given that other players are following
σ−i. There is a subset Σd

i (σi, h
t) of strategies i is allowed to deviate to. I take these

strategies to be one-shot deviations at ht, returning to σi thereafter:

Σd
i (σi, h

t) = {σd
i ∈ Σi|σi(h) ̸= σd

i (h) ⇔ h = ht}

When there is no ambiguity, I will identify a one-shot deviation σd
i with the devi-

ating action σd
i (h

t).
Regret is defined in a particular environment e of future games unknown to

the players. The equilibrium concept defined below captures the idea that each
player minimises regret given the strategies of others, assuming that an adversarial
Nature picks a continuation environment that maximises the regret of his chosen
strategy.

Definition 1. A strategy profile σ is a Regret Perfect Equilibrium (RPE) if

sup
e

Ri(σ|ht, e) ≤ inf
σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) (1)

for any player i and history ht.
The LHS and RHS of (1) are respectively called the equilibrium regret and

(lowest) deviation regret of i at ht.

As noted above, the set of deviant strategies has been restricted to one-shot
deviations. This affects both the strategies players contemplate choosing and the
strategies they consider counterfactually to compute their regret. In stochastic
games the restriction to one-shot deviations is without loss of generality. Here,
however, the restriction is with loss because the regret-minimising preferences are
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time inconsistent. This is a general hurdle in dynamic models with robust ob-
jectives (Carroll, 2019).2 While these time-inconsistency issues are interesting and
present an important challenge, I abstract from them here to maintain tractability
and to stay as close as possible to the standard framework of stochastic games.
My approach can also be interpreted to assume that players expect to reoptimise
their strategies at each future history to minimise worst-case continuation regret.

The restriction to one-shot deviations makes it possible to simplify the regret
expressions as follows:

Ri(σ|ht, e) = sup
ai∈Ai

(1− δ)
[
ui(ai, σ−i(h

t), θt)− ui(σ(h
t), θt)

]
+δ
[
Ui(σ|ht, ai, σ−i(h

t), e)− Ui(σ|ht, σ(ht), e)
]
. (2)

3 Known environment

Suppose that Θ consists of a single game θ so that there is no ambiguity about
the environment e = (θ, θ, ..) of games that will be played. Then in any RPE σ

σi ∈ argmin
σ′
i∈Σd

i (σi,ht)

Ri(σ
′
i, σ−i|ht, e)

for any history ht and player i. It follows that Ri(σ|ht, e) = 0, since it is possible
to make Ri(σ

′
i, σ−i|ht, e) arbitrarily small by considering strategies σ′

i ∈ Σd
i (σi, h

t)
that approximately attain the supremum of Ui(σ

′
i, σ−i|ht, e). Hence,

σi ∈ argmax
σ′
i∈Σd

i (σi,ht)

Ui(σ
′
i, σ−i|ht, e),

which means that any one-shot deviation from σi decreases i’s payoff. This is the
exact requirement for σ to be a Subgame Perfect Equilibrium (SPE) of an infinitely
repeated game θ.

Conversely, if σ is a SPE of an infinite repetition of θ, then Ri(σ|ht, e) = 0 for
every player i and history ht. It follows that σ is also a RPE. Thus, RPE coincides
with SPE in the absence of ambiguity about stage games. This equivalence also
holds when the environment e is known but nonstationary.

Since Ri(σ|ht, e) = 0, it follows from (2) that

(1− δ)di(σ(h
t), θt) ≤ δ

(
Ūi(e)− U i(e)

)
(3)

where Ūi(e) and U i(e) are respectively the supremum and infimum payoff for player
i over all RPE payoffs in environment e. This is a necessary condition familiar from
the theory of stochastic games: The maximum payoff i can gain by deviating from
his equilibrium strategy does not exceed an incentive gap – the difference between
i’s best and worst continuation equilibrium payoffs (the former used to reward his
equilibrium action and the latter used to punish his deviation).

2Libgober and Mu (2021, 2022) also face this issue of time inconsistency. They resolve it by
assuming the worst-case behaviour of Nature is time-consistent. In my setting this would mean
that at every history Nature reselects the worst-case environment of future games to maximise
continuation regret.
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4 Bounds

In this section I obtain necessary conditions for action profiles played in a RPE.

4.1 Initial estimate

For any w = (w1, ..., wn), let

A∗(θ|w) = {a ∈ A|(1− δ)di(a, θ) ≤ δwi ∀i} .

Action profiles in A∗(θ|w) are said to be supported in game θ by incentive gap w.
In the setting of Section 3, where the environment is known, a necessary con-

dition for RPE is that the actions at any history are supported by gap (Ū1(e) −
U1(e), .., Ūn(e)− Un(e)), where e is the only possible environment. Proposition 1
below extends this bound to the general case. It states that equilibrium actions
must be supported by a gap w∗ = (w∗

1, .., w
∗
n) consisting of each player’s highest

difference between best and worst equilibrium payoffs across all environments, that
is

w∗
i = sup

e

(
Ūi(e)− U i(e)

)
.

Proposition 1. Let σ be a RPE. Then σ(ht) ∈ A∗(θt|w∗) at any history ht.

The proof of Proposition 1 and other omitted proofs are in the Appendix. Even
though Proposition 1 generalises condition (3) from stochastic games, it cannot
be obtained using the usual arguments, since RPE and SPE do not coincide in
general. The argument, instead, obtains bounds on the equilibrium regret and
deviation regret of player i at any history ht. Suppose that if i does not deviate,
he receives the highest continuation payoff Ūi(e) in any continuation environment
e. This can only lower equilibrium regret and increase deviation regret, so the
equilibrium condition (1) continues to hold. Notice that i’s regret from deviating
to an action that maximises his time-t payoff can be no larger than δw∗

i – the largest
difference between RPE continuation payoffs. On the other hand his equilibrium
regret can be no higher than (1− δ)di(σ(h

t), θt), since continuation payoffs on the
equilibrium path dominate payoffs following any deviation. If equilibrium regret
equals the above bound, then it follows from (1) that

(1− δ)di(σ(h
t), θt) ≤ δw∗

i , (4)

as required. If the equilibrium regret is lower than the bound by some amount x,
the continuation payoffs following a deviation in any environment e cannot be as
high as Ūi(e). This makes it possible to refine the bound on the deviation regret,
showing that it decreases by x as well, preserving the desired inequality (4).

4.2 Recursive representation and algorithm

It is now possible to make progress towards a fixed point representation of the
optimal incentive gaps w∗. On the one hand, Proposition 1 obtains a superset of
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RPE action profiles as a function of w∗. On the other hand, these action profiles
imply bounds on RPE payoffs that can be used to estimate w∗. This connection
is captured by the following operator B : Rn

+ → Rn
+ defined on arbitrary incentive

gaps w:

Bw =

(
max

θ
max

a∈A∗(θ|w)
ui(a, θ)− min

a∈A∗(θ|w)
ui(a, θ)

)
i=1,..,n

.

Let āi(θ|w) and ai(θ|w) denote the action profiles in A∗(θ|w) that respectively
maximise and minimise player i’s payoff. A game θ is incentive-optimal for i given
gap w if it maximises the stage-game payoff difference ui(ā

i(θ|w)) − ui(a
i(θ|w)).

The operator B computes this payoff difference for each player to obtain a new
gap Bw. Note that the new gaps for each player may be computed in different
games, since their incentive-optimal games need not coincide.

The operator B is inspired by the recursive operator of Abreu, Pearce, and
Stacchetti (1990) which can provide an exact characterisation of equilibrium pay-
offs in stochastic games (Mailath and Samuelson, 2006). In what follows I use simi-
lar arguments to obtain an upper bound on equilibrium actions instead. There is a
much closer connection to the recursive operators of Carroll (2020) and Krasikov
and Lamba (2022) used to characterise Ex-Post Equilibria; this is discussed in
Section 6.3.

Definition 2. A gap w is self-generating if Bw ≥ w.

Lemma 1. w∗ is self-generating.

Many gaps can be self-generating. The following result obtains the largest self-
generating gap w̄ using an algorithmic procedure similar to APS.

Lemma 2. Let w0 = (2M, .., 2M). Define wk+1 = Bwk inductively for each k =
0, 1, ... Then

1. (wk) is decreasing and converges to some limit w̄.

2. Bw̄ = w̄.

3. w̄ ≥ w for any self-generating gap w ≤ w0.

Proof. 1. Since payoffs are bounded by M , it follows that w1 ≤ 2M = w0. That
the rest of the sequence is monotonically decreasing follows from the monotonicity
of B. Hence, (wk) converges to some w̄ = (limk→∞ wk

1 , .., limk→∞ wk
n).

2. By monotonicity of B it follows that Bw̄ ≤ Bwk = wk+1 for all k. Taking
the limit as k → ∞ obtains Bw̄ ≤ w̄. It remains to show that w̄ is self-generating.
To this end, fix a player i and consider sequences (θk), (āk), (ak) such that

(Bwk)i = ui(ā
k, θk)− ui(a

k, θk) and āk, ak ∈ A∗(θk|wk)

for all k. By Assumption (A1) they converge to some respective limits θ∞, ā∞, a∞

along some subsequence. It follows from the continuity of ui that ā
∞, a∞ ∈ A∗(θ∞|w̄).

Hence (Bw̄)i ≥ limk(Bwk)i. Since i is arbitrary, the result obtains.
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3. Let w ≤ w0 be a self-generating gap with wi > w̄i for some i. By mono-
tonicity of (wk) there exists K = max{k|wk ≥ w}. Hence, there exists j such that
wK+1

j < wj. It follows from the monotonicity of B that

(Bw)j ≤ (BwK)j = wK+1
j < wj.

Hence, w is not self-generating. A contradiction.

It is now possible to summarise the results of this section in the following upper
bound on the set of equilibrium actions:

Theorem 1. Let σ be a RPE. Then σ(ht) ∈ A∗(θt|w̄) at any history ht.

Proof. Since payoffs are bounded by M , it follows that w∗ ≤ w0. Lemma 1 and
Lemma 2 then imply that w∗ ≤ w̄. The result now follows from Proposition 1,
since A∗(θ|w) is increasing in w.

4.3 Computation in the risk-sharing game

This section outlines the computation of the gap w̄ from Lemma 2 in the risk-
sharing supergame from Example 1.

Consider i’s best action profile in game θ under gap w. It can be shown that
in this profile i gives nothing to j ̸= i, and j gives i the largest income share
supported by gap w:

āi(θ|w) = (0, aij)

where aij = max
{
aj ∈ [0, 1]

∣∣∣(1− δ)
(
v(θj)− v((1− aj)θj)

)
≤ δwj

}
Similarly, in i’s worst action profile he contributes as much as possible, while j
gives him nothing:

ai(θ|w) = (aii, 0)

where aii = max
{
ai ∈ [0, 1]

∣∣∣(1− δ)
(
v(θi)− v((1− ai)θi)

)
≤ δwi

}
Now I find an incentive-optimal game (θi, θj) for i under gap w. Since j’s income
affects i’s best utility but not his worst, it is without loss of generality to set
θj = θ̄ to maximise j’s contribution. The income of player i must be the highest
amount that he is willing to give to j, leaving i with zero utility in his worst
outcome. A lower income for i would decrease his best utility, while leaving his
worst utility unchanged. A higher income would also decrease the gap between
best and worst utility due to decreasing marginal utility. In summary, there is an
incentive-optimal game for i with endowments

θi = min

{
v−1

(
δ

1− δ
wi

)
, θ̄

}
and θj = θ̄.
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The recursive operator is then given by

(Bw)i = v

(
min

{
v−1

(
δ

1− δ
w1

)
, θ̄

}
+ θ̄ − v−1

(
max

{
v(θ̄)− δ

1− δ
w2, 0

}))

Since the supergame is symmetric, the algorithm in Lemma 2 boils down to a
one-dimensional recursion that is easy to compute. It is also possible to obtain the
following closed form for w̄ when v(x) =

√
x:

w̄1 = w̄2 = min

{
2v(θ̄)

δ

1− δ
, v(2θ̄)− v(0)

}
.

When players are patient, w̄i equals the maximum possible gap, i.e. the incentive-
optimal game is (θ̄, θ̄), i receives all of j’s income in his best outcome, and gives all
of his income away in his worst outcome. When players are sufficiently impatient,
the upper bound on the equilibrium gap is increasing in the maximum income and
the discount factor.

5 Attaining the bounds

In this section I demonstrate the attainability of action profiles from Theorem 1
in a RPE. The results use the following assumptions, maintained for the rest of
the section.

Assumption (A2). Θ has no isolated points.3

Assumption (A3). A1, .., An have no isolated points.

In conjunction with (A1), Assumption (A2) implies that the payoffs from any
game can be approximated with arbitary precision in another game. This seems
natural in the presence of ambiguity – if players do not know the probability
of playing a certain stage game, they likely entertain the possibility of similar
games. Since (locally) compact metric spaces with no isolated points are uncount-
able, (A1) and (A2) also imply that Θ is uncountable.4 Assumption (A2) holds in
Examples 1 and 2 where the set of stage games is a product of intervals.

Assumption (A3) implies the same richness in action spaces; in particular ac-
tion spaces must be uncountable. This allows for many standard games where the
available actions are an interval, such as the risk-sharing game from Example 1,
but rules out games with finitely many actions such as the partnership game in
Example 2. Games with general action spaces are addressed in Section 6.1.

3x is an isolated point of a metric space if any open ball centered on x contains at least one
other point.

4See Theorem 27.7 in Munkres (2013).

11



5.1 Outcomes

At the onset, it is unclear what it means to attain actions in a RPE due to the
ambiguity about the games that will be played. Following Carroll (2020), I adopt
two ways of defining outcomes in the supergame.

First, an analyst may be concerned with actions played in a particular envi-
ronment, perhaps known to the analyst but not to the players.

Definition 3. A realisable outcome is a pair (e, a), where e is an environment
and a = (at)

∞
t=0 is a sequence of action profiles in A.

A full outcome, instead, describes actions taken in all possible environments.

Definition 4. A full outcome is a collection (at)
∞
t=0 of functions at : Θ

t+1 → A.

5.2 Approximate implementability

I will study the implementability of realisable and full outcomes on the path of
RPE in the following sense.

Definition 5. A history ht is on the path of strategy profile σ if as = σ(θ0, a0, .., θs)
for all s < t.

Let Γ(δ) denote the supergame with discount factor δ.

Definition 6. A realisable outcome (e, a) is (approximately) implementable if for
all δ′ > δ there exists a RPE σ of Γ(δ′) such that σ(ht) = at for any history ht on
the path of σ such that (θ0, .., θt) = (e0, .., et).

Definition 7. A full outcome a is (approximately) implementable if for all δ′ > δ,
there exists a RPE σ of Γ(δ′) and a countable set X ⊆ Θ such that σ(ht) =
at(θ0, θ1, .., θt) for any history ht on the path of σ.

Approximate implentability requires that the outcome matches behaviour on
the path of equilibria of supergames with higher (but arbitrarily close) discount
factors. There is an exception – equilibria implementing a full outcome need not
match it in a countable number of games. Since Θ is uncountable, this means that
only a zero-measure set of games is excluded from the outcome.5

The main result of the paper is that realisable and full outcomes are approx-
imately implementable if and only if the actions at each history are within the
bounds from Theorem 1.

Theorem 2.

1. A realisable outcome is approximately implementable iff
at(θ0, .., θt) ∈ A∗(θt|w̄) for all (θ0, .., θt)

5Definition 7 can be strengthened so that for any countable set Θ0 ⊆ Θ it requires the
existence of equilibria where X ⊆ Θ \Θ0. This would not change the results.
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2. A full outcome is approximately implementable iff
at(θ0, .., θt) ∈ A∗(θt|w̄) for all (θ0, .., θt).

The proof of the “only if” direction of both parts of Theorem 2 is a direct
consequence of the bounds in Theorem 1; it is relegated to the Appendix. The “if”
direction is obtained from the equilibrium constructions in the following sections.

5.3 Implementation of full outcomes

Consider any discount factor δ and full outcome a with at(h
t) ∈ A∗(θt|w̄) for

any ht. Recall that incentive-optimal games admit the largest range of payoffs
for the respective player. Hence, a worst-case environment of incentive-optimal
games has the potential to create maximal regret, making it a natural vehicle for
the implementation of outcome a. However, there is in general only one incentive-
optimal game for each player, which turns out to be too restrictive for the provision
of dynamic incentives. Therefore, the equilibrium construction that follows relies
on environments consisting of games that are approximately incentive-optimal in
the following sense.

Definition 8. A game θi is ε-optimal for i if

ui(ā
i(θi|w̄), θi)− ui(a

i(θi|w̄), θi) > max
θ

(
ui(ā

i(θ|w̄), θ)− ui(a
i(θ|w̄), θ)

)
− ε.

It follows from Bw̄ = w̄ (Lemma 2) that

max
θ

(
ui(ā

i(θ|w̄), θ)− ui(a
i(θ|w̄), θ)

)
− ε = w̄i − ε.

Thus, ε-optimal games for i can support a payoff gap arbitrarily close to w̄i.
Assumptions (A1) and (A2) imply that the set of ε-optimal games for i is locally
compact and has no isolated points; hence, it is uncountable (cf. footnote 4).

Equilibrium construction

Let ε > 0 and consider countably infinite and pairwise disjoint sets Θ1, ..,Θn

such that each game in Θi is ε-optimal games for i.6 In what follows I construct
a strategy profile σ. I will later show that σ forms a RPE in supergames with
discount factor δ′ > δ, but for now it is useful to think of σ in the context of Γ(δ).

The construction assigns to each history ht a set of Θi(ht) ⊆ Θi of reward
games for player i. The strategies are fully determined by the reward games as
follows:

σ(ht) =


āi(θt|w̄) if θt ∈ Θi(ht)

at(θ0, .., θt) if θt /∈ ∪iΘ
i(ht) and ht is on the path of σ

aj(θt|w̄) if θt /∈ ∪iΘ
i(ht) and j was the last player to deviate from σ

6Such a selection exists because there are uncountably many ε-optimal games for each player.
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As long as there are no deviations, the strategies implement the outcome a in
each game that is not a reward game for any player. This excludes a countable set
Θ1∪ ..∪Θn of games from the outcome. Off the equilibrium path, the worst profile
for the deviator supported by w̄ is played. In case ht exhibits multiple deviations,
the player who deviated in the most recent round is punished.7 Finally, in a reward
game for player i the strategies specify the best action profile for i regardless of
past deviations.

The set of reward games evolves as follows. At each initial history h0 ∈ H0 let
Θi(h0) = Θi. At each history ht there are two reward games θi1, θ

i
2 ∈ Θi(ht) and an

action a′i ∈ Ai that is an ε-best reply to σ−i(h
t) for each i. The set of reward games

at t+ 1 is unchanged from Θi(ht) if i does not deviate at ht. If i deviates, one of
θi1, θ

i
2 is excluded from future reward games – the former is excluded if, and only

if i deviates to a′i. Formally, the set of reward games for i at ht+1 = (ht, a, θt+1) is

Θi(ht+1) =


Θi(ht) if ai = σi(h

t)

Θi(ht) \ {θi1} if ai = a′i
Θi(ht) \ {θi2} if ai ̸= σi(h

t), a′i

(5)

for any a ∈ A, θt+1 ∈ Θ.

Regret bounds

The strategies σ constructed above make use of each player’s best and worst
action profiles supported by w̄ with discount factor δ.8 However, approximately
implementability only requires that these strategies form a RPE when the discount
factor is δ′ > δ. Here, I consider any such δ′ and obtain bounds on the equilibrium
and deviation regret of σ in Γ(δ′).

Fix some history ht and a player i. Consider i’s equilibrium regret at ht. Note
that any deviation at ht gives i a lower continuation payoff from t + 1 than the
payoff he would obtain from following σ regardless of the continuation environ-
ment. This is because i’s deviation shrinks his set of reward games and results in
his worst payoff in any non-reward game (assuming other players do not deviate).
It follows that i’s equilibrium regret can be no larger than his maximum payoff
gain at t:

sup
e

Ri(σ|ht, e) ≤ (1− δ′)di(σ(h
t), θt). (6)

Suppose i plays a one-shot deviation to a′i and hence, θi1 is excluded from
future rewards. When the continuation environment is ei1 = (θi1, θ

i
1, ..) this results

in actions ai(θi1) in each subsequent period. But any other one-shot deviation as
well as the equilibrium strategy will result in actions āi(θi1), since θi1 will not be
excluded from future rewards. Moreover, at least one of these alternative strategies

7RPE relies on unilateral deviations, so the specification of the strategies following multiple
deviations in the same period is immaterial.

8Note that w̄ also depends on δ, since it is obtained from the algorithm in Lemma 2.
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plays an ε-best response to σ−i(h
t). Thus,

Ri(a
′
i, σ−i|ht, ei1) ≥ (1− δ′)(−ε) + δ′(w̄i − ε).

Now suppose that i plays a one-shot deviation to adi ̸= a′i and hence, θi2 is ex-
cluded from future rewards. When the continuation environment is ei2 = (θi2, θ

i
2, ..)

this results in actions ai(θi2) in each subsequent period. If i instead deviates to a′i,
actions ai(θi2) would be played. Thus,

Ri(a
d
i , σ−i|ht, ei2) ≥ (1− δ′)(−ε) + δ′(w̄i − ε).

Hence, deviation regret can be bounded from below as follows:

inf
σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) ≥ δ′w̄i − ε (7)

Proof of the “if direction” of Theorem 2 for full outcomes

Let δ′ > δ. For ε > 0 small enough the regret bounds (6) and (7) imply that

sup
e

Ri(σ|ht, e) ≤ (1− δ)di(σ(h
t), θt) ≤ δw̄i ≤ inf

σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) (8)

for any history ht and player i. The second inequality follows from σ(ht) ∈
A∗(θt|w̄). If θt ∈ Θi(ht) this is by definition of āi(θt|w̄); otherwise, σ(ht) =
a(θ0, .., θt) which is assumed in A∗(θt|w̄).

Hence, for every δ′ > δ there exists a RPE σ implementing a in the sense of
Definition 7 with X = Θ1 ∪ .. ∪Θn.

5.4 Implementation of realisable outcomes

The implementation of a realisable outcome (a, e) is less demanding that the im-
plementation of full outcome because the outcome needs to be matched only in
environment e. Hence, this part of Theorem 2 can be proved using the above equi-
librium construction for full outcomes. One only needs to ensure that the reward
games Θ1, ..,Θn do not overlap with any games from environment e. Since the sets
of ε-optimal games for each player are uncountable, it is straightforward to show
that the reward games can be selected in such a manner.

6 Discussion

6.1 General action spaces

The equilibrium construction in Section 5.3 is quite distinct from constructions
used in stochastic games. Notably, when a player deviates, what he regrets the
most under the worst-case continuation environment is not that he did not follow
the equilibrium strategy. Instead, his biggest regret is that he did not deviate
to another action that (almost) maximises his immediate payoff and provides the
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same (maximal) continuation payoff as the equilibrium strategy. Such a high regret
cannot be obtained from the equilibrium strategy unless the latter prescribes a best
reply. Hence, this aspect of the construction – that the deviator regrets another
deviation – is necessary to attain the bounds from Theorem 1 in RPE. However, it
requires that for any deviation, there exists another deviation that plays an ε-best
reply. This is exactly the condition imposed by Assumption (A3) on action spaces.
This section leverages the tools developed so far to give a partial characterisation
of implementability in games with arbitrary action sets, i.e. when Assumption (A3)
is dropped.

Lower bound on RPE actions

The characterisation uses analogues of supportable actions A∗ and the maximum
reward-punishment gap w̄ for equilibria where deviators regret the equilibrium
strategy the most. Let

A(θ|w) = {a ∈ A|2(1− δ)di(a, θ) ≤ δwi ∀i}

and let w be the gaps obtained by the algorithmic procedure in Lemma 2 with
operator B given by

Bw =

(
max

θ
max

a∈A(θ|w)
ui(a, θ)− min

a∈A(θ|w)
ui(a, θ)

)
i=1,..,n

.

in place of the operator B.9 Proposition 2 states that actions in A(θ|w) are im-
plementable in game θ. Though these actions are a subset of A∗(θ|w̄), they are
implementable for any action spaces.

Proposition 2. Assume (A1) and (A2). Then

1. Any realisable outcome (a, e) with at ∈ A(et|w) is approximately implementable.

2. Any full outcome a with a(ht) ∈ A(θt|w) is approximately implementable.

Proof. The proof follows the arguments from Section 5.3 and Section 5.4. I sketch
the argument for full outcomes, omitting some details. Let a be a full outcome with
a(ht) ∈ A(θt|w) for all ht and let ε > 0. There exist disjoint, countably infinite
sets Θ1, ..,Θn such that

max
a∈A(θi|w)

ui(a, θ
i)− min

a∈A(θi|w)
ui(a, θ

i) > max
θ

(
max

a∈A(θ|w)
ui(a, θ)− min

a∈A(θ|w)
ui(a, θ)

)
− ε

for all i and θi ∈ Θi. Consider an amendment of the construction in Section 5.3,
where the reward games evolve according to

Θi(ht+1) =

{
Θi(ht) if ai = σi(h

t)

Θi(ht) \ {θi1} if ai ̸= σi(h
t)

9See Lemma 5 in the Appendix.
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instead of (5). That is, all deviations exclude the same game from future rewards.
For any δ′ > δ, the bound on i’s equilibrium regret in (6) holds by the same argu-
ment, but the bound on i’s deviation regret in (7) no longer holds. A weaker bound
can be obtained by considering a continuation environment (θi1, θ

i
1, ..). There, i’s

biggest regret is that he did not follow the equilibrium strategy and hence

inf
σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) ≥ δ′wi − (1− δ′)di(σ(h

t), θt).

Similarly to (8), it follows that

sup
e

Ri(σ|ht, e) ≤ (1− δ)di(σ(h
t), θt)

≤ δwi − (1− δ)di(σ(h
t), θt) ≤ inf

σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e)

for all i and ht when ε > 0 is sufficiently small. Note that a(ht) ∈ A(θt|w) is used
to obtain the second inequality.

Proposition 2 gives a general lower bound on the actions implementable in
a RPE. Moreover, the upper bound from Theorem 1 continues to hold because
it was derived in the absence of Assumption (A3). Thus, the set of supportable
actions in game θ is between A(θ|w) and A∗(θ|w̄).

Binary action spaces

The above characterisation can be sharpened in games with two actions for each
player. In particular, an exact characterisation is obtained when one of the games
in Θ is payoff-invariant in the following sense:10

Definition 9. A game θ is trivial if ui(a, θ) = ui(a
′, θ) for all i and a, a′ ∈ A.

Trivial games give each player the same payoff no matter the actions played.
The risk-sharing example contains a trivial game where both endowments equal
zero. A trivial game may also represent a period where players cannot interact for
exogenous reasons. For example, a trivial game in the partnership example can be
an interruption in activities due to change in business conditions, restructuring,
dissolution of the partnership, etc.

Proposition 3. Assume (A1) and (A2). If |Ai| = 2 for all i and there exists a
trivial game in Θ, then

1. A realisable outcome (a, e) is approximately implementable only if at ∈ A(et|w).

2. A full outcome a is approximately implementable only if a(ht) ∈ A(θt|w).

The upper bound on implementable actions is obtained because for every devia-
tion there is only one other action that the player can regret. Thus, any deviator’s

10This assumption was suggested to me by Sam Kapon.
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biggest regret must be the equilibrium action. This helps obtain the following
bound on deviation regret:

inf
σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) ≤ δw − (1− δ)di(σ(h

t), θt).

On the other hand, the existence of a trivial game places a lower bound on equi-
librium regret. If all future games are trivial, regret equals the maximum payoff
gain in the current period. Hence,

sup
e

Ri(σ|ht, e) ≥ (1− δ)di(σ(h
t), θt).

It follows that the actions σ(ht) played at any history ht in a RPE σ are in A(θt|w),
which suffices to show Proposition 3.

The same idea can be used to refine the upper bound on implementable ac-
tions in other settings. In games with more than two actions the upper bound
on deviation regret would be higher, since other deviations may have better im-
mediate payoffs than the equilibrium action. In the absence of a trivial game a
weaker lower bound on equilibrium regret can be obtained by considering for each
player the game that minimises the largest difference in payoffs across all action
profiles. This would be a trivial game if one exists, resulting in a payoff difference
of zero. In general, this difference may be higher, necessitating an adjustment of
the bound.

Computation in the partnership game

Proposition 3 applies to the partnership supergame in Example 2 augmented with
the possibility of a trivial game (where, for instance, each action profile has zero
payoff for both players).11 Thus, approximately implementable outcomes can be
characterised via gap w obtained by iterative application of B starting from w0 =
(2M, 2M).

Consider any gap w = (w1, w2) with 0 ≤ w1 = w2 ≤ 2M . For any player i,
action aj ∈ Aj, and nontrivial game θ = (θ1, θ2)

di(s, aj, θ) < 0 and di(w, aj, θ) = c− θj.

Hence, shirking can always be supported by gap w (recall that it is a dominant
strategy in every stage game). Let

θ̃ = max
{
θ,min{θ|2(1− δ)(c− θ) ≤ δw1}

}
.

11The introduction of a trivial game may violate Assumption (A2). However, Proposition 3 con-
tinues to hold because the argument relies on the existence of games approximating ε-incentive
optimal games. Trivial games generate a best-case payoff gap of 0, so they are not ε-incentive
optimal for sufficiently small ε except in the degenerate case where every game is trivial.
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be the lowest productivity where working can be supported by gap w. It follows
that

A(θ|w) =


A1 × A2 if θ1 ≥ θ̃, θ2 ≥ θ̃

{(s, s)} if θ1 < θ̃, θ2 < θ̃

{(s, s), (w, s)} if θ1 ≥ θ̃, θ2 < θ̃

{(s, s), (s, w)} if θ1 < θ̃, θ2 ≥ θ̃

for every nontrivial game θ. If θ̃ > θ̄ only shirking is supported. Otherwise, it can
be shown that (θ̃, θ̄) is an incentive-optimal game for player 1. All action profiles
are supported in this game by gap w. Profile (s, w) results in the highest payoff for
player 1 equal to θ2 = θ̄. Profile (w, s) results in the worst payoff of θ1− c = θ̃− c.
Thus,

(Bw)1 = (Bw)2 =

{
0 if θ̃ > θ̄

θ̄ − (θ̃ − c) otherwise

It follows that w1 = w2. If these gaps are positive, the threshold productivity θ̃
where working can be supported by w satisfies

2(1− δ)(c− θ̃) ≤ δw1 = δ(Bw)1 = δ[θ̄ − (θ̃ − c)].

Since w is the largest fixed point of B, θ̃ is the largest productivity for which the
above inequality holds, that is

θ̃ = max{θ|(2− 3δ)(c− θ) ≤ δθ̄}.

It is now possible to solve for the implementable outcomes as follows:

� If 2(1−δ)
2−3δ

θ̄ < c, then θ̃ > θ̄ and working cannot be induced in any stage game.
Thus, only shirking is implementable.

� If δ ≥ 2
3
, then θ̃ = θ so working can be induced in every stage game. Thus,

any outcome is implementable.

� In the remaining cases any player can be induced to work if, and only if his
productivity is no less than c− δθ̄/(2− 3δ).

Greater patience and lower cost of effort expand the set of implementable out-
comes, as expected. An increase in θ̄, which can be interpreted as greater ambi-
guity, also has a positive effect on incentives.

6.2 Folk Theorem

There is a long-standing tradition to explore the limits of equilibrium behaviour
as the players become arbitrarily patient, i.e. δ → 1. It is possible to obtain such
a result here as well.
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Recall the algorithm from Lemma 2 that obtains w̄ by repeated application of
the operator B. Since B is increasing in δ, the algorithm implies that w̄ is also
increasing in δ. Thus, as δ → 1, the immediate gain from deviation vanishes, while
the incentive gaps stay bounded away from zero (except in degenerate cases where
a player’s payoff is unaffected by his own actions and the actions of others). It
follows that A∗(θ|w̄) → A for all θ as δ → 1. Under assumptions (A1), (A2) and
(A3) Theorem 2 implies that any action profile in any game can be played in a
RPE given sufficient patience. The result also holds in general action spaces, since
A behaves similarly to A∗ in the patient limit.

Proposition 4. Assume (A1) and (A2). Then

1. For any realisable outcome (a, e), there exists δ̄ ∈ (0, 1) such that (a, e) is
approximately implementable whenever δ > δ̄.

2. For any full outcome a, there exists δ̄ ∈ (0, 1) such that a is approximately
implementable whenever δ > δ̄.

Proposition 4 contrasts folk theorems for stochastic games (Dutta, 1995; Fu-
denberg and Yamamoto, 2011; Hörner, Sugaya, Takahashi, and Vieille, 2011). In
stochastic games players have nontrivial payoff guarantees they can obtain by play-
ing best replies at each stage. These individually rational payoffs place a lower
bound on equilibrium payoffs that holds irrespective of patience. Such a lower
bound does not exist in my setting because players minimise worst-case regret
instead of maximising payoff.

6.3 Comparison to Ex-Post Equilibrium

Carroll (2020) introduced the model studied in this paper, and proposed the fol-
lowing solution concept.

Definition 10. A strategy profile σ is an Ex-Post Equilibrium (XPE) if the re-
striction of σ to any environment e forms a SPE of the stochastic game where et
played at time t with probability 1.

Every XPE is a RPE because the regret from following the equilibrium strategy
at any history is zero for any continuation environment, whereas the regret from
deviations is nonnegative. XPE coincides with RPE when there is a single stage
game in Θ – both equilibrium notions become equivalent to SPE. But in general,
the RPE set may be much larger. For example, consider any XPE of a supergame
that admits a trivial game in the sense of Definition 9. Since the strategies form
a SPE in a continuation environment of trivial games, they must prescribe stage-
game Nash Equilibrium behaviour at every history, regardless of patience. On the
other hand, any action profiles in any game are implementable in RPE for high
discount factors, as shown in Proposition 4.

It is possible to make a more detailed comparison by specialising to the case
of a single long-lived player studied by Carroll (2020). Suppose players 2, .., n
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have discount factor 0, i.e. they are completely myopic. Let δ ∈ (0, 1) denote the
discount factor of the long-lived player 1. For any gap w ∈ R+ and game θ, let

A∗(θ|w) = {a ∈ A|(1− δ)d1(a, θ) ≤ δw, di(a, θ) = 0 ∀i = 2, .., n}

be the set of supportable actions in θ, accounting for the heterogeneity in dis-
counting. Let

BXPEw = min
θ

max
a∈A∗(θ|w)

u1(a, θ)− min
a∈A∗(θ|w)

u1(a, θ),

and let w̄XPE be the (unique) gap obtained by iterative application of BXPE with
starting gap w0 = 2M , similarly to Lemma 2. Carroll (2020) shows that the set
of XPE actions in any game θ is A∗(θ|w̄XPE).12

On the other hand, Theorems 1 and 2 can be adapted to this setting to show
that under Assumptions (A1) and (A2) the set of RPE actions in any game θ is
A∗(θ|w̄), where

Bw = max
θ

max
a∈A∗(θ|w)

u1(a, θ)− min
a∈A∗(θ|w)

u1(a, θ),

and w̄ is obtained from the algorithmic procedure in Lemma 2 with A∗ and B as
defined above.

The differences between XPE and RPE can then be seen by comparing opera-
tors BXPE and B. The former obtains the maximum payoff gap for the long-run
player in the worst case among all stage games, whereas the latter obtains a
best-case maximum gap. XPE is a more conservative solution concept because it
requires that dynamic incentives work even in a worst-case environment. RPE is
more permissive because dynamic incentives need only work in a single regret-
maximising environment.

The comparison is less clear in the of multiple long-lived players. Krasikov and
Lamba (2022) use a recursive operator similar to BXPE that recurses on common
gaps w = (w1, .., wn) such that w1 = .. = wn. In symmetric games their operator
becomes a counterpart of my operator B, replacing maximisation over stage games
with minimisation as in the case of a single long-lived player. However, this method
obtains only a subset of XPE except in special cases.13

12The results of Carroll (2020) are adapted in several ways. The notions of implementability of
full and realisable outcomes in Carroll (2020) are stronger – they require neither the exclusion of
games from full outcomes, nor any increase in the discount factor. Carroll (2020) also considers
a different recursive operator

BXPEw = min
θ

(1− δ)

(
max

a∈A∗(θ|w)
u1(a, θ)− min

a∈A∗(θ|w)
u1(a, θ)

)
+ δw,

but my definition obtains the same gap w̄XPE and, consequently, the same characterisation of
XPE actions.

13Some of these special cases are strongly symmetric equilibria, linear Bertrand models, and
high discount factors.
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7 Conclusion

This paper extends the celebrated class of preferences for worst-case regret min-
imisation to dynamic interactions in ambiguous environments. I provide a charac-
terisation of equilibrium actions for fixed discounting. Its tractability allows me to
tackle common applications from stochastic games, and it even provides closed-
form solutions in some cases. I believe this approach can be fruitful in other appli-
cations, even those where the stage game is dynamic such as relational contracting
and Stackelberg games. It will be interesting to see how much of this tractability
can translate to settings with imperfect monitoring or incomplete information.
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Appendix

Proof of Proposition 1

Fix any i and ht. Suppose di(σ(h
t), θt) > 0 otherwise, the result is immediate by

w∗ ≥ 0. Then there exists adi ̸= σi(h
t) that is a best reply to σ−i(h

t) in θt. For any
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environment e and ε > 0 it follows from (2) that there exists ai ∈ Ai such that i’s
regret from a one-shot deviation to adi satisfies

Ri(a
d
i , σ−i|ht, e) ≤ (1− δ)

[
ui(ai, σ−i(h

t), θt)− ui(a
d
i , σ−i(h

t), θt)
]

+ δ
[
Ui(σ|ht, ai, σ−i(h

t), e)− Ui(σ|ht, adi , σ−i(h
t), e)

]
+ ε.

It also follows from (2) that i’s regret from his equilibrium action satisfies

Ri(σ|ht, e) ≥ (1− δ)
[
ui(ai, σ−i(h

t), θt)− ui(σ(h
t), θt)

]
+ δ
[
Ui(σ|ht, ai, σ−i(h

t), e)− Ui(σ|ht, σ(ht), e)
]
.

Combining the above inequalities yields

Ri(a
d
i , σ−i|ht, e) ≤ Ri(σ|ht, e)− (1− δ)di(σ(h

t), θt)

+ δ
[
Ui(σ|ht, σ(ht), e)− Ui(σ|ht, adi , σ−i(h

t), e)
]
+ ε

≤ Ri(σ|ht, e)− (1− δ)di(σ(h
t), θt)

+ δ
[
Ūi(e)− U i(e)

]
+ ε

Taking the supremum over e of both sides and using the equilibrium condition at
ht yields

0 ≤ −(1− δ)di(σ(h
t), θt) + δw∗

i + ε

The desired result follows by taking ε > 0 arbitrarily small.

Proof of Lemma 1

The proof follows from the following chain of inequalities for all i

w∗
i ≡ sup

e

(
Ūi(e)− U i(e)

)
≤ sup

e
(1− δ)

∞∑
t=0

δt
(

max
a∈A∗(et|w∗)

u(a, et)− min
a∈A∗(et|w∗)

u(a, et)

)
≤ max

θ

(
max

a∈A∗(θ|w∗)
u(a, θ)− min

a∈A∗(θ|w∗)
u(a, θ)

)
= (Bw∗)i,

where the first inequality follows from Proposition 1.

Proof of Theorem 2 – “only if” direction

For the first part, notice that Theorem 1 and implementability imply that at ∈
A∗(et|w̄(δ′), δ′) for all δ′ > δ. Similarly for the second part, a(ht) ∈ A∗(θt|w̄(δ′), δ′)
for all δ′ > δ. Hence, it suffices for both results to show that

A∗(θ|w̄(δ), δ) =
⋂
δ′>δ

A∗(θ|w̄(δ′), δ′)
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for any game θ.
To this end, consider any gap w and sequences (wk), (δk) such that wk ↘ w

and δk ↘ δ. It follows from the monotonicity and continuity of A∗ in the gap
and discount factor that A∗(θ|wk, δk) ↘ A∗(θ|w, δ) for any θ. Hence, B(wk|δk) ↘
B(w|δ). It follows from the algorithmic characterisation of Lemma 2 that w̄(δk) ↘
w̄(δ). By monotonicity and continuity A∗(θ|w̄(δk), δk) decreases monotonically to
A∗(θ|w̄(δ), δ) for θ. The desired result follows because the sequence δk ↘ δ is
arbitrary.

Proof of Proposition 3

The proof is broken up into several lemmas mirroring results in Section 4. The
first lemma is a counterpart to Proposition 1.

Lemma 3. Let σ be a RPE. Then σ(ht) ∈ A(θt|w∗) for all ht.

Proof. Consider any i and ht. Since actions sets are binary, there exists a unique
action adi ∈ Ai distinct from σi(h

t). Hence, the deviation regret at ht satisfies

Ri(a
d
i |ht, e) = (1− δ)

[
ui(σ(h

t), θt)− ui(a
d
i , σ−i(h

t), θt)
]

+ δ
[
Ui(σ|ht, σ(ht), e)− Ui(σ|ht, adi , σ−i(h

t), e)
]

≤ −(1− δ)di(σ(h
t), θt) + δ[Ūi(e)− U i(e)].

It follows that

inf
σ′
i∈Σd

i (σi,ht)
sup
e

Ri(σ
′
i, σ−i|ht, e) ≤ δw∗ − (1− δ)di(σ(h

t), θt). (9)

Let eτ be an environment of trivial games. Then equilibrium regret satisfies

sup
e

Ri(σ|ht, e) ≥ Ri(σ|ht, eτ )

= (1− δ)
[
ui(a

d
i , σ−i(h

t), θt)− ui(σ(h
t), θt)

]
= (1− δ)di(σ(h

t), θt).

(10)

The result follows by combining (9) and (10).

The next results are counterparts to Lemma 1 and Lemma 2. They can be
proved similarly to their counterparts by replacing A∗ with A and B with B.

Lemma 4. Bw∗ ≥ w∗.

Lemma 5. Let w0 = (2M, .., 2M). Define wk+1 = Bwk inductively for each k =
0, 1, ... Then

1. (wk) is decreasing and converges to some limit w.

2. Bw = w.

3. w ≥ w for any gap w ≤ w0 such that Bw ≥ w.

It follows from Lemmata 3, 4, and 5 that σ(ht) ∈ A(θt|w) for any RPE σ and
history ht. Proposition 3 then follows by the argument for the “if” direction of
Theorem 2.
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Proof of Proposition 4

Let w(δ′) denote the gap w when the discount factor is δ′. Since A is increasing in
δ, it follows from Lemma 5 that w(δ) is increasing in δ. Fix a player i.

Case 1: Suppose wi(δ
′) = 0 for all δ′. Consider the algorithmic procedure in

Lemma 5. By monotonicity of the sequence (wk) it must be that ui(a, θ) = ui(a
′, θ)

for any game θ and action profiles a, a′ ∈ A(θ|w0). But A(θ|w0) = A when the
discount factor is above 1/2. Thus, di(a, θ) = 0 for all a, θ.

Case 2: Suppose δ′wi(δ
′) ≥ ε > 0 for some δ′. Let δ̄ ≥ δ′ satisfy 4(1− δ̄)M < ε.

It follows that

2(1− δ)di(a, θ) ≤ 4(1− δ)M < 4(1− δ̄)M < ε ≤ δ′wi(δ
′) ≤ δwi(δ)

for any δ > δ̄, a, and θ.
Hence, in both cases

sup
a,θ

2(1− δ)di(a, θ) ≤ δwi(δ)

for all i whenever δ > δ̄. The proof now follows from Proposition 2.
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