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1 Nonlinear Regression

The normal linear regression model may be written

yi = x
′

iβ + εi

where x
′

i is a (row) vector of predictors for the ith of n observations, usually with a 1 in the first position
representing the regression constant; β is the vector of regression parameters to be estimated; and εi is a
random error, assumed to be normally distributed, independently of the errors for other observations, with
expectation 0 and constant variance: εi ∼ NID(0, σ2).

In the more general normal nonlinear regression model, the function f(·) relating the response to the
predictors is not necessarily linear:

yi = f(β,x′

i) + εi

As in the linear model, β is a vector of parameters and x
′

i is a vector of predictors (but in the nonlinear
regression model, these vectors are not generally of the same dimension), and εi ∼ NID(0, σ2).

The likelihood for the nonlinear regression model is

L(β, σ2) =
1

(2πσ2)n/2
exp

{
−

∑n
i=1

[
yi − f

(
β,x′

i

)]2
2σ2

}

This likelihood is maximized when the sum of squared residuals

S(β) =
n∑

i=1

[
yi − f

(
β,x′

i

)]2
is minimized. Differentiating S(β),

∂S(β)

∂β
= −2

∑[
yi − f

(
β,x′

i

)] ∂f (
β,x′

i

)
∂β

Setting the partial derivatives to 0 produces estimating equations for the regression coefficients. Because
these equations are in general nonlinear, they require solution by numerical optimization. As in a linear
model, it is usual to estimate the error variance by dividing the residual sum of squares for the model by the
number of observations less the number of parameters (in preference to the ML estimator, which divides by
n).

Coefficient variances may be estimated from a linearized version of the model. Let

Fij =
∂f

(
β̂,x′

i

)
∂β̂j
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and F = {Fij}. Then the estimated asymptotic covariance matrix of the regression coefficients is

V̂(β̂) = s2(F′
F)−1

where s2 is the estimated error variance.
Bates and Watts (1988) provide a comprehensive reference on nonlinear regression and nonlinear least

squares estimation; an accessible, brief treatment is Gallant (1975).

1.1 An Illustration

A simple model for population growth towards an asymptote is the logistic model

yi =
β1

1 + eβ2
+β

3
xi

+ εi

where yi is the population size at time xi; β1 is the asymptote towards which the population grows; β2

reflects the size of the population at time x = 0 (relative to its asymptotic size); and β3 controls the growth
rate of the population.

2 The nls Function in S

The S function nls (located in the standard nls library in R) performs nonlinear least-squares estimation.
Like the lm function, nls takes formula, data, subset, weights, and na.action arguments, but the right-
hand side of the formula argument is treated as a standard algebraic expression rather than as a linear-model
formula. There are additional, technical, arguments to nls: I discuss the arguments start and trace below;
for further information, see help(nls).

The data frame US.pop in the car library has decennial Census population data for the United States
(in millions), from 1790 through 1990. The data are graphed in Figure 1 (a):

> library(car)

. . .

> data(US.pop)

> attach(US.pop)

> plot(year, population)

>

[The line in Figure 1 (a), which I shall add to the plot presently, represents the fit of the logistic population-
growth model.]

To fit the logistic model to the U. S. Census data, we need start values for the parameters. It is often
important in nonlinear least-squares estimation to choose reasonable start values, and this generally requires
some insight into the structure of the model. We know that β1 represents asymptotic population. The data
in Figure 1 (a) show that in 1990 the U. S. population stood at about 250 million and did not appear to be
close to an asymptote; so as not to extrapolate too far beyond the data, let us set the start value of β1 to
350.

It is convenient to scale time so that x1 = 0 in 1790, and so that the unit of time is 10 years. Then
substituting β1 = 350 and x = 0 into the model, using the value y1 = 3.929 from the data, and assuming
that the error is 0, we have

3.929 =
350

1 + eβ2
+β

3
0

Solving for β2 gives us a plausible start value for this parameter:

eβ2 =
350

3.929
− 1

β2 = loge

(
350

3.929
− 1

)
� 4.5
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Figure 1: (a) U. S. population, showing the fit of the logistic growth model. (b) Residuals from the model.

Finally, returning to the data, at time x = 1 (i.e., at the second Census, in 1800), population was y2 = 5.308.
Using this value, along with the previously determined start values for β1 and β2, and again setting the error
to 0, we have

5.308 =
350

1 + e4.5+β
3
1

Solving for β3,

e4.5+β
3 =

350

5.308
− 1

β3 = loge

(
350

5.308
− 1

)
− 4.5 � −0.3

Start values for nls are given via the start argument, which takes a named list of parameters. To fit
the logistic growth model to the U. S. population data:

> library(nls)

> time <- 0:20

> pop.mod <- nls(population ~ beta1/(1 + exp(beta2 + beta3*time)),

+ start=list(beta1 = 350, beta2 = 4.5, beta3 = -0.3),

+ trace=T)

13007 : 350.0 4.5 -0.3

609.57 : 351.80749 3.84050 -0.22706

365.44 : 383.70453 3.99111 -0.22767

356.41 : 389.13503 3.98972 -0.22658

356.4 : 389.14629 3.99038 -0.22663

356.4 : 389.16653 3.99034 -0.22662

356.4 : 389.16551 3.99035 -0.22662

> summary(pop.mod)

Formula: population ~ beta1/(1 + exp(beta2 + beta3 * time))
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Parameters:

Estimate Std. Error t value Pr(>|t|)

beta1 389.1655 30.8120 12.6 2.2e-10

beta2 3.9903 0.0703 56.7 < 2e-16

beta3 -0.2266 0.0109 -20.9 4.6e-14

Residual standard error: 4.45 on 18 degrees of freedom

Correlation of Parameter Estimates:

beta1 beta2

beta2 -0.166

beta3 0.915 -0.541

Setting trace=T produces a record of the iterative minimization of the residual sum of squares, along
with the parameter estimates at each iteration. In this case, six iterations were required. The summary of
the model gives coefficients, standard errors, the estimated error variance, and the correlations among the
coefficients. The latter can be useful when nls has difficulty producing a solution: Very high correlations
between coefficients are indicative of ill-conditioning.

Many familiar generic functions, such as summary, have methods for the nonlinear-model objects produced
by nls. For example, the fitted.values function makes it simple to plot the fit of the model, adding a line
to the graph in Figure 1 (a):

> lines(year, fitted.values(pop.mod), lwd=2)

>

Likewise, plotting residuals against time [Figure 1 (b)] suggests that while the logistic model reproduces
the gross characteristics of the growth of the U. S. population to 1990, it misses the nuances:

> plot(year, residuals(pop.mod), type=’b’)

> abline(h=0, lty=2)

>

2.1 Specifying the Gradient

The process of maximizing the likelihood involves calculating the n×p gradient matrixF = {∂f
(
β̂,x′

i

)
/∂β̂j}.

By default, nls computes the gradient numerically using a finite-difference approximation, but it is also possi-
ble to provide a formula for the gradient directly to nls. This is done by writing a function of the parameters
and predictors that returns the fitted values of y, with the gradient as an attribute.

For the logistic-growth model, the partial derivatives of f
(
β̂,x′

i

)
with respect to β̂ are

∂f
(
β̂,x′

i

)
∂β̂1

= [1 + exp(β̂2 + β̂3xi)]
−1

∂f
(
β̂,x′

i

)
∂β̂2

= −β̂1[1 + exp(β̂2 + β̂3xi)]
−2 exp(β̂2 + β̂3xi)

∂f
(
β̂,x′

i

)
∂β̂3

= −β̂1[1 + exp(β̂2 + β̂3xi)]
−2 exp(β̂2 + β̂3xi)xi

We may therefore proceed as follows, defining a function model for the right-hand side of the model (less
the error), and producing the same results as before:

> model <- function(beta1, beta2, beta3, time){

+ model <- beta1/(1 + exp(beta2 + beta3*time))
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+ term <- exp(beta2 + beta3*time)

+ gradient <- cbind((1 + term)^-1, # in proper order

+ -beta1*(1 + term)^-2 * term,

+ -beta1*(1 + term)^-2 * term * time)

+ attr(model, ’gradient’) <- gradient

+ model

+ }

> summary(nls(population ~ model(beta1, beta2, beta3, time),

+ start=list(beta1=350, beta2=4.5, beta3=-0.3)))

Formula: population ~ model(beta1, beta2, beta3, time)

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta1 389.16551 30.81196 12.63 2.20e-10

beta2 3.99035 0.07032 56.74 < 2e-16

beta3 -0.22662 0.01086 -20.87 4.60e-14

Residual standard error: 4.45 on 18 degrees of freedom

Correlation of Parameter Estimates:

beta1 beta2

beta2 -0.1662

beta3 0.9145 -0.5407

In many– perhaps most – cases, little is gained by this procedure, because the increase in computational
efficiency is more than offset by the additional mathematical and programming effort required. It might be
possible, however, to have one’s cake and eat it too, by using the deriv function in S to compute a formula
for the gradient and to build the requisite function for the right side of the model. For the example:

> model <- deriv(~ beta1/(1 + exp(beta2 + beta3*time)), # rhs of model

+ c(’beta1’, ’beta2’, ’beta3’), # parameter names

+ function(beta1, beta2, beta3, time){} # arguments for result

+ )

> summary(nls(population ~ model(beta1, beta2, beta3, time),

+ start=list(beta1=350, beta2=4.5, beta3=-0.3)))

Formula: population ~ model(beta1, beta2, beta3, time)

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta1 389.16551 30.81196 12.63 2.20e-10

beta2 3.99035 0.07032 56.74 < 2e-16

beta3 -0.22662 0.01086 -20.87 4.60e-14

. . .
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