
Bootstrapping Regression Models in R

An Appendix to An R Companion to Applied Regression, Second Edition

John Fox & Sanford Weisberg

last revision: 10 October 2017

Abstract

The bootstrap is a general approach to statistical inference based on building a sampling
distribution for a statistic by resampling from the data at hand. This appendix to Fox and
Weisberg (2011) briefly describes the rationale for the bootstrap and explains how to bootstrap
regression models using the Boot function, which was added to the car package in 2012, and
therefore is not described in Fox and Weisberg (2011). This function provides a simple way to
access the power of the boot function (lower-case “b”) in the boot package.

In 2017, the generic Boot function was extensively revised so that it now will work with
many regression problems. Use of the function with the betareg and crch packages are given.

1 Basic Ideas

The Bootstrap is a general approach to statistical inference based on building a sampling distribution
for a statistic by resampling from the data at hand. The term “bootstrapping,” due to Efron (1979),
is an allusion to the expression“pulling oneself up by one’s bootstraps,” in this case, using the sample
data as a population from which repeated samples are drawn. At first blush, the approach seems
circular, but has been shown to be sound.

At least two R packages for bootstrapping are associated with extensive treatments of the
subject: Efron and Tibshirani’s (1993) bootstrap package, and Davison and Hinkley’s (1997)
boot package. Of the two, boot, programmed by A. J. Canty, is somewhat more capable and is a
part of the standard R distribution. The bootstrap is potentially very flexible and can be used in
many different ways, and as a result using the boot package require some programming. In this
appendix we will mostly discuss the car function Boot, which provides a simplified front-end to the
boot package.

Confusion alert: Boot with a capital “B” is a function in the car package,
and is the primary function used in the appendix. It is really just a convenience
function that calls the function boot with a lower-case “b” in a package that is
also called boot, also with a lower-case “b”. We hope you will get a kick out of
all the boots.

There are several forms of the bootstrap, and, additionally, several other resampling methods
that are related to it, such as jackknifing, cross-validation, randomization tests, and permutation
tests. We will stress the nonparametric bootstrap.

Suppose that we draw a sample S = {X1, X2, ..., Xn} from a population P = {x1, x2, ..., xN};
imagine further, at least for the time being, that N is very much larger than n, and that S is a

1

simple random sample1. We will briefly consider other sampling schemes at the end of the appendix.
It is helpful initially to think of the elements of the population and, hence, of the sample as scalar
values, but they could just as easily be vectors.

Suppose that we are interested in some statistic T = t(S) as an estimate of the corresponding
population parameter θ = t(P). Again, θ could be a vector of parameters and T the corresponding
vector of estimates, but for simplicity assume that θ is a scalar. A traditional approach to statistical
inference is to make assumptions about the structure of the population, such as an assumption of
normality, and, along with the stipulation of random sampling, to use these assumptions to derive
the sampling distribution of T , on which classical inference is based. In certain instances, the exact
distribution of T may be intractable, and so we instead derive its asymptotic distribution. This
familiar approach has two potentially important deficiencies:

1. If the assumptions about the population are wrong, then the corresponding sampling dis-
tribution of the statistic may be seriously inaccurate. If asymptotic results are relied upon,
these may not hold to the required level of accuracy in a relatively small sample.

2. The approach requires sufficient mathematical prowess to derive the sampling distribution of
the statistic of interest. In some cases, such a derivation may be prohibitively difficult.

In contrast, the nonparametric bootstrap allows us to estimate the sampling distribution of a
statistic empirically without making assumptions about the form of the population, and without
deriving the sampling distribution explicitly. The essential idea of the nonparametric bootstrap is as
follows: We proceed to draw a sample of size n from among the elements of the sample S, sampling
with replacement. Call the resulting bootstrap sample S∗1 = {X∗11, X∗12, ..., X∗1n}. It is necessary to
sample with replacement, because we would otherwise simply reproduce the original sample S. In
effect, we are treating the sample S as an estimate of the population P; that is, each element Xi of
S is selected for the bootstrap sample with probability 1/n, mimicking the original selection of the
sample S from the population P. We repeat this procedure a large number of times, R, selecting
many bootstrap samples; the bth such bootstrap sample is denoted S∗b = {X∗b1, X∗b2, ..., X∗bn}.

The key bootstrap analogy is therefore as follows:

The population is to the sample
as

the sample is to the bootstrap samples.

Next, we compute the statistic T for each of the bootstrap samples; that is T ∗b = t(S∗b). Then
the distribution of T ∗b around the original estimate T is analogous to the sampling distribution of
the estimator T around the population parameter θ. For example, the average of the bootstrapped
statistics,

T
∗

= Ê∗(T ∗) =

∑R
b=1 T

∗
b

R

1Alternatively, P could be an infinite population, specified, for example, by a probability distribution function.

2

estimates the expectation of the bootstrapped statistics; then B̂∗ = T
∗ − T is an estimate of the

bias of T , that is, T − θ. Similarly, the estimated bootstrap variance of T ∗,

V̂ar
∗
(T ∗) =

∑R
b=1(T

∗
b − T

∗
)2

R− 1

estimates the sampling variance of T . The square root of this quantity

ŜE
∗
(T ∗) =

√∑R
b=1(T

∗
b − T

∗
)2

R− 1

is the bootstrap estimated standard error of T .
The random selection of bootstrap samples is not an essential aspect of the nonparametric

bootstrap, and at least in principle we could enumerate all bootstrap samples of size n. Then we
could calculate E∗(T ∗) and Var∗(T ∗) exactly, rather than having to estimate them. The number
of bootstrap samples, however, is astronomically large unless n is tiny.2 There are, therefore,
two sources of error in bootstrap inference: (1) the error induced by using a particular sample
S to represent the population; and (2) the sampling error produced by failing to enumerate all
bootstrap samples. The latter source of error can be controlled by making the number of bootstrap
replications R sufficiently large.

2 Bootstrap Confidence Intervals

There are several approaches to constructing bootstrap confidence intervals. The normal-theory
interval assumes that the statistic T is normally distributed, which is often approximately the case
for statistics in sufficiently large samples, and uses the bootstrap estimate of sampling variance,
and perhaps of bias, to construct a 100(1− α)% confidence interval of the form

θ = (T − B̂∗)± z1−α/2ŜE
∗
(T ∗)

where z1−α/2 is the 1 − α/2 quantile of the standard-normal distribution (e.g., 1.96 for a 95%
confidence interval, when α = .05).

An alternative approach, called the bootstrap percentile interval, is to use the empirical quantiles
of T ∗b to form a confidence interval for θ:

T ∗(lower) < θ < T ∗(upper)

where T ∗(1), T
∗
(2), . . . , T

∗
(R) are the ordered bootstrap replicates of the statistic; lower = [(R+ 1)α/2];

upper = [(R + 1)(1− α/2)]; and the square brackets indicate rounding to the nearest integer. For
example, if α = .05, corresponding to a 95% confidence interval, and R = 999, then lower = 25 and
upper = 975.

The bias-corrected, accelerated (or BC a) percentile intervals perform somewhat better than the
percentile intervals just described. To find the BCa interval for θ:

� Calculate

z = Φ−1


R
#
b=1

(T ∗b ≤ T)

R+ 1


2If we distinguish the order of elements in the bootstrap samples and treat all of the elements of the original

sample as distinct (even when some have the same values) then there are nn bootstrap samples, each occurring with
probability 1/nn.

3

where Φ−1(·) is the standard-normal quantile function, and # (T ∗b ≤ T) /(R + 1) is the (ad-
justed) proportion of bootstrap replicates at or below the original-sample estimate T of θ. If
the bootstrap sampling distribution is symmetric, and if T is unbiased, then this proportion
will be close to .5, and the correction factor z will be close to 0.

� Let T(−i) represent the value of T produced when the ith observation is deleted from the

sample;3 there are n of these quantities. Let T represent the average of the T(−i); that is

T =
∑n

i=1 T(−i)/n. Then calculate

a =

∑n
i=1

(
T − T(−i)

)3
6
[∑n

i=1

(
T(−i) − T

)2] 3
2

� With the correction factors z and a in hand, compute

a1 = Φ

[
z +

z − z1−α/2
1− a(z − z1−α/2)

]
a2 = Φ

[
z +

z + z1−α/2

1− a(z + z1−α/2)

]
where Φ(·) is the standard-normal cumulative distribution function. The values a1 and a2 are
used to locate the endpoints of the corrected percentile confidence interval:

T ∗(lower*) < θ < T ∗(upper*)

where lower* = [Ra1] and upper* = [Ra2]. When the correction factors a and z are both 0,
a1 = Φ(−z1−α/2) = Φ(zα/2) = α/2, and a2 = Φ(z1−α/2) = 1− α/2, which corresponds to the
(uncorrected) percentile interval.

To obtain sufficiently accurate 95% bootstrap percentile or BCa confidence intervals, the number
of bootstrap samples, R, should be on the order of 1000 or more; for normal-theory bootstrap
intervals we can get away with a smaller value of R, say, on the order of 100 or more, because all
we need to do is estimate the standard error of the statistic.

3 Bootstrapping Regressions

Recall Duncan’s regression of prestige on income and education for 45 occupations from Chapters 1
and 6 in Fox and Weisberg (2011)4. In the on-line appendix on robust regression, we refit this
regression using an M -estimator with the Huber weight function, employing the rlm function in
the MASS package, which is available when you load the car package:

3The T(−i) are called the jackknife values of the statistic T . Although we will not pursue the subject here, the
jackknife values can also be used as an alternative to the bootstrap to find a nonparametric confidence interval for θ.

4R functions used but not described in this appendix are discussed in Fox and Weisberg (2011) All the R code
in this appendix can be downloaded from http://tinyurl.com/carbook. Alternatively, if you are running R and
attached to the Internet, load the car package and enter the command carWeb(script="appendix-bootstrap") to
view the R command file for the appendix in your browser.

4

library(car)

library(MASS)

mod.duncan.hub <- rlm(prestige ~ income + education, data=Duncan, maxit=200)

summary(mod.duncan.hub)

##

Call: rlm(formula = prestige ~ income + education, data = Duncan, maxit = 200)

Residuals:

Min 1Q Median 3Q Max

-30.12 -6.89 1.29 4.59 38.60

##

Coefficients:

Value Std. Error t value

(Intercept) -7.111 3.881 -1.832

income 0.701 0.109 6.452

education 0.485 0.089 5.438

##

Residual standard error: 9.89 on 42 degrees of freedom

The coefficient standard errors reported by rlm rely on asymptotic approximations, and may not
be trustworthy in a sample of size 45. Let us turn, therefore, to the bootstrap. We set the maxit

argument to rlm in anticipation of the bootstrap, because some of the bootstrap samples may need
more iterations to converge.

There are two general ways to bootstrap a regression like this: We can treat the predictors as
random, potentially changing from sample to sample, or as fixed. We will deal with each case in
turn, and then compare the two approaches. For reasons that should become clear in the subsequent
sections, random-x resampling is also called case resampling, and fixed-x resampling is also called
residual resampling.

3.1 Random-x or Case Resampling

Broadening the scope of the discussion, assume that we want to fit a regression model with response
variable y and predictors x1, x2, . . . , xk. We have a sample of n observations z′i = (yi,xi1, xi2, . . . , xik),
i = 1, . . . , n. In random-x or case resampling, we simply select R bootstrap samples of the z′i, fitting
the model and saving the coefficients from each bootstrap sample. This is the default method used
by the Boot function in car.

The call to the Boot function has up to five arguments:

Boot(object, f = coef, labels = names(f(object)), R = 999,

method = c("case", "residual"), ...)

Only the first argument is required, and it must be the name of a regression object such as
the object mod.duncan.hub we just created with the call to rlm. We will discuss in Section 5 the
conditions that need to be satisfied for an object to work with the Boot function. The argument f is
the name of a function that will be computed on each bootstrap replication. The default is the coef
function, which for most regression objects will return the vector of regression coefficient estimates.
If this argument is to set f = coef meaning that the coefficient estimates will be computed and
saved on each replication. If you wanted a bootstrap distribution for the scale factor in an rlm

5

fit, you could use f = sigmaHat, since the car function sigmaHat returns the scale factor. You
could return both the coefficients and the scale factor with f = function(mod){c(coef(mod),

sigmaHat(mod))}. The argument labels provides labels for the quantities that are kept on each
iteration. If not set, the program selects labels. In the default case of f = coef, the program
will use the coefficient labels but in other cases the labels used may not be very descriptive. For
example, labels=c(labels(coef(mod)), "sigmaHat") would be appropriate if f returns both
coefficient estimates and the scale estimate. The next argument, method, can be either "case", the
default for case resampling, or "residual" for residual resampling discussed later in this appendix.
The final ... argument permits passing additional arguments to the boot function.

For the example of Duncan’s data fit with a Huber M estimate, we specify

set.seed(12345) # for reproducibility

system.time(duncan.boot <- Boot(mod.duncan.hub, R=1999))

Loading required namespace: boot

user system elapsed

5.89 0.00 5.91

We ran Boot within a call to the function system.time to provide a sense of how long a
bootstrapping operation like this takes. In this case, we generated R = 1999 bootstrap replicates
of the regression coefficients. The first number returned by system.time is the CPU (processing)
time for the operation, in seconds, while the third number is the total elapsed time. Here, both
CPU and elapsed time are several seconds.5 Although this is a small problem, the time spent
depends more upon the number of bootstrap samples than upon the sample size. There are two
ways to think about waiting several seconds for the bootstrapping to take place: On the one hand,
we tend to be spoiled by the essentially instantaneous response that R usually provides, and by
this standard several seconds seems a long time. On the other hand, bootstrapping is not an
exploratory procedure, and a brief wait is a trivial proportion of the time typically spent on a
statistical investigation.

The Boot function returns an object, here named boot.duncan, of class "boot". The car
package includes a summary method,

summary(duncan.boot, high.moments=TRUE)

R original bootBias bootSE bootMed bootSkew bootKurtosis

(Intercept) 1999 -7.111 0.13965 3.100 -6.937 0.12191 0.258

income 1999 0.701 -0.01274 0.179 0.715 -0.19903 0.357

education 1999 0.485 0.00699 0.139 0.481 0.00321 0.678

The summary gives the original sample value for each component of the bootstrapped statistics,
along with the bootstrap estimates of bias, the difference T

∗−T between the average bootstrapped
value of the statistic and its original-sample value. The bootstrap estimates of standard error
[ŜE
∗
(T ∗)] are computed as the standard deviation of the bootstrap replicates. As explained in

the previous section, these values may be used to construct normal-theory confidence intervals
for the regression coefficients. In this example the bootstrap standard errors of the income and
education coefficients are substantially larger than the asymptotic estimates reported by rlm.

5The time will vary slightly from run to run, and more substantially depending on hardware and operating system.

6

The bootstrap estimates of skewness and kurtosis are added here because high.moments=TRUE; the
default is FALSE. See help(summary.boot) for additional arguments to the summary method for
"Boot" objects.

The function vcov will return the estimated covariance matrix, that is the sample covariance
matrix of the bootstrap samples,

vcov(duncan.boot)

(Intercept) income education

(Intercept) 9.6105 -0.02660 -0.10225

income -0.0266 0.03188 -0.02322

education -0.1022 -0.02322 0.01931

This quantity may be needed in some futher computations,
The car package also includes a confint method to produce confidence intervals for "boot"

objects:

confint(duncan.boot, level=.90, type="norm")

Bootstrap quantiles, type = normal

##

5 % 95 %

(Intercept) -12.3495 -2.151

income 0.4205 1.008

education 0.2499 0.707

confint(duncan.boot, parm=2:3, level=c(.68, .90, .95), type="perc")

Bootstrap quantiles, type = percent

##

2.5 % 5 % 16 % 84 % 95 % 97.5 %

income 0.316 0.3764 0.4961 0.8441 0.9539 1.0192

education 0.221 0.2799 0.3702 0.6317 0.7297 0.7795

confint(duncan.boot, level=.95, type="bca")

Bootstrap quantiles, type = bca

##

2.5 % 97.5 %

(Intercept) -12.9587 -1.3133

income 0.2210 0.9415

education 0.2743 0.8311

The first of these examples uses normal theory with the bootstrap standard errors. The second
example uses the percentile method, and gives the quantiles for a number of intervals simultaneously.
The final example uses the BCa method, and this is the default if no arguments beyond the first
are provided in the call to the function.

A graphical view of the bootstraps can be obtained with the hist function, as shown in Fig-
ure ??, drawn by

7

(Intercept)

D
en

si
ty

−15 −10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

income

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

education

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

Bootstrap histograms

fitted normal density
Kernel density est
95% bca confidence interval
Observed value of statistic

Figure 1: Case bootstrap histograms.

hist(duncan.boot, legend="separate")

There is a separate histogram for each bootstrapped quantity, here each coefficient. In addition to
the histograms we also get kernel density estimates and the normal density based on the bootstrap
mean and standard deviation. The vertical dashed line makes the original point-estimate, and the
thick horizontal line gives a confidence interval based on the bootstrap. Whereas the two density
estimates for the intercept are similar, the normal approximation is poor for the other coefficients,
and confidence intervals are not close to symmetric about the original values. This suggests that
inference from the bootstrap is different from the asymptotic theory, and that the bootstrap is
likely to be more accurate in this small sample. See help("hist.boot") for additional arguments
to hist.

We next use the dataEllipse function from the car package to examine the joint distribution
of the bootstrapped income and education coefficients. The function draws a scatterplot of the
pairs of coefficients, with concentration ellipses superimposed (Figure 2):

dataEllipse(duncan.boot$t[, 2], duncan.boot$t[, 3],

xlab="income coefficient", ylab="education coefficient",

cex=0.3, levels=c(.5, .95, .99), robust=TRUE)

The first two arguments to dataEllipse are duncan.boot$t[, 2] and duncan.boot$t[, 3],
which are the vectors of bootstraps for the second and third coefficients, for income and education.

8

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

income coefficient

ed
uc

at
io

n
co

ef
fic

ie
nt

Figure 2: Scatterplot of bootstrap replications of the income and education coefficients from the
Huber regression for Duncan’s occupational-prestige data. The concentration ellipses are drawn at
the 50, 90, and 99% levels using a robust estimate of the covariance matrix of the coefficients.

3.2 Additional Functionality from the boot Package

The objects created when using the Boot function can also be examined with all the helper functions
that are included in the boot package. For example, if you simply print the object:

library(boot)

##

Attaching package: ’boot’

The following object is masked from ’package:car’:

##

logit

duncan.boot

##

ORDINARY NONPARAMETRIC BOOTSTRAP

##

##

Call:

boot::boot(data = dd, statistic = boot.f, R = R, .fn = f)

##

##

Bootstrap Statistics :

original bias std. error

t1* -7.1107 0.139653 3.1001

9

t2* 0.7014 -0.012739 0.1785

t3* 0.4854 0.006993 0.1390

the resulting output is from the print method provided by the boot package for "boot" objects.
This is similar to the summary.boot method from car, but the labels are less informative. The
boot.array function returns an R× n matrix in which the entry in row b, column i indicates how
many times the ith observation appears in the bth bootstrap sample:

duncan.array <- boot.array(duncan.boot)

duncan.array[1:2,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 0 2 1 2 0 0 1 0 2 1 3 2 3 1

[2,] 2 2 1 1 2 0 0 0 0 2 2 1 0 2

[,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]

[1,] 2 0 1 1 1 2 1 1 0 1 0 1

[2,] 1 3 1 0 0 0 0 0 0 2 2 1

[,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]

[1,] 3 2 0 0 1 1 1 0 0 2 1 0

[2,] 0 1 0 2 0 2 1 2 3 0 2 1

[,39] [,40] [,41] [,42] [,43] [,44] [,45]

[1,] 0 0 2 2 1 0 0

[2,] 1 1 1 1 1 0 1

Thus, for example, observation 1 appears twice in the second bootstrap sample, but not at all
in the first sample.

The (unfortunately named) jack.after.boot function displays a diagnostic jackknife-after-
bootstrap plot. This plot shows the sensitivity of the statistic and of the percentiles of its boot-
strapped distribution to deletion of individual observations. An illustration, for the coefficients of
income and education, appears in Figure 3, which is produced by the following commands:

par(mfcol=c(2, 1))

jack.after.boot(duncan.boot, index=2, main="(a) income coefficient")

jack.after.boot(duncan.boot, index=3, main="(b) education coefficient")

The horizontal axis of the graph, labeled “standardized jackknife value,” is a measure of the
influence of each observation on the coefficient. The observation indices corresponding to the points
in the graph are shown near the bottom of the plot. Thus observations 6 and 16 serve to decrease
the income coefficient and increase the education coefficient. As is familiar from Chapters 1 and
6 of the R Companion, these are the problematic occupations minister and railroad-conductor.

The horizontal broken lines on the plot are quantiles of the bootstrap distribution of each
coefficient, centered at the value of the coefficient for the original sample. By default the .05,
.10, .16, .50, .84, .90, and .95 quantiles are plotted. The points connected by solid lines show the
quantiles estimated only from bootstrap samples in which each observation in turn did not appear.
Therefore, deleting the occupation minister or conductor makes the bootstrap distributions for the
coefficients slightly less dispersed. On the other hand, removing occupation 27 (railroad-engineer)
or 30 (plumber) makes the bootstrap distributions somewhat more variable. From our earlier work
on Duncan’s data (see, in particular, Chapter 6), we recognize railroad-engineer as a high-leverage

10

−4 −3 −2 −1 0 1

−
0.

6
−

0.
2

0.
2

(a) income coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* *
* * * *************** ******************** * *

** *

* *
* * * *************** ******************** *

*
** *

* *
* * * *************** ******************** *

*
** *

* * * * * *************** ******************** * * ** *
* * * * * *************** ******************** *

*
** ** * * * * *************** ******************** *

*
** ** * * * * *

******* ******

************** *

*

** *

16 22 327 443135 14 41
6 25 363 51138 24 27

33 40 2334 394 43 28 17
30 12 1542 1913 26 20 18

8 379 1 2910 245 21

−1 0 1 2 3 4

−
0.

4
−

0.
2

0.
0

0.
2

(b) education coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

*
* **

*

*********** *********************** * * * * * ** * **
*
*********** *********************** * * * * * ** * **
*
*********** *********************** * * * * * *

* * ** ************ *********************** * * * * * *

* * **
*
*********** *********************** * * * * * *

* * ** ************ *********************** * * * *
* *

* * **
************ *********************** * * * *

*
*

21 32 24 45 1144 3931 7
17 14 41 2535 3371 30

28 9 43 1936 341315 33
18 29 2 204 84042 6

27 26 23 12103822 5 16

Figure 3: Jackknife-after-bootstrap plot for the income (a) and education (b) coefficients in the
Huber regression for Duncan’s occupational-prestige data.

11

but in-line occupation; it is unclear to us, however, why the occupation plumber should stand out
in this manner.

boot objects have their own plot method that differs from the hist method described above,
a method called boot.ci that is useful for comparing methods for generating confidence intervals
but less useful for data analysis, and several other methods; see help("boot").

3.3 Bypassing the Boot Function

In this section we show how to use boot directly to get a bootstrap. For regression problems in
which the data are sampled independently, this will generally be unnecessary as Boot provides
sufficient functionality, but for other problems, for example, a bootstrap for the distribution of
a sample median. You will also have to call boot directly when the data are generated from a
complex sampling design, a subject to which we return briefly in Section 6. For these purposes you
will need to write a function that lays out what needs to be done for each bootstrap sample. Here
is an example that corresponds to what Boot does by default:

boot.huber <- function(data, indices, maxit=20){

data <- data[indices,] # select obs. in bootstrap sample

mod <- rlm(prestige ~ income + education, data=data, maxit=maxit)

coef(mod) # return coefficient vector

}

This function has three arguments. The first argument takes a data frame. The second argument
is a vector of row indices that make up the bootstrap sample, and will be supplied for each bootstrap
replication by boot. The function boot.huber takes a third argument, maxiter, which sets the
maximum number of iterations to perform in each M -estimation; we included this provision because
we found that the default of 20 iterations in rlm is not always sufficient. The boot function is able
to pass additional arguments through to the function specified in its statistic argument. This
function will recompute the regression fit for each bootstrap sample, and then return the coefficient
estimates.

Here is the call to boot

set.seed(12345) # for reproducibility

library(boot) # needed only if boot not previously loaded

duncan.boot.1 <- boot(data=Duncan, statistic=boot.huber,

R=1999, maxit=200)

The first argument to boot is the data set—a vector, matrix, or data frame—to which bootstrap
resampling is to be applied. Each element of the data vector, or each row of the matrix or data
frame, is treated as an observation. The argument statistic is function that returns the possibly
vector-valued statistic to be bootstrapped. The argument R is the number of bootstrap replications.
The maxit argument is passed to the statistic function. Additional arguments are described in
the on-line help for boot.

Since the same random seed was used in creating duncan.boot.1 using boot and duncan.boot

using Boot, the returned objects are identical, and you can use the hist, summary and confint

methods with either object.

12

3.4 Fixed-x or Residual Resampling

The observations in Duncan’s occupational-prestige study are meant to represent a larger population
of all Census occupations, but they are not literally sampled from that population. It therefore
makes some sense to think of these occupations, and hence the pairs of income and education

values used in the regression, as fixed with respect to replication of the study. The response values,
however, are random, because of the error component of the model. There are other circumstances
in which it is even more compelling to treat the predictors in a study as fixed — for example, in a
designed experiment where the values of the predictors are set by the experimenter.

How can we generate bootstrap replications when the model matrix X is fixed? In residual
resampling, we write

Y = Xβ̂ + (Y −Xβ̂)

= Ŷ + e

so Ŷ is the vector of fitted values and e is a vector of residuals. In residual resampling we fix Ŷ
and resample the residuals e, to get

Y∗ = Ŷ + e∗

The "residual" method for Boot implements a slight modification of this procedure, by resampling
scaled and centered residuals, with i-th element

ri =
ei√

1− hi
− r̄

where hi is the i-leverage. This is the suggested method in Davison and Hinkley (1997, Alg. 6.3,
p. 271).

set.seed(54321) # for reproducibility

summary(duncan.fix.boot <- Boot(mod.duncan.hub, R=1999, method="residual"))

R original bootBias bootSE bootMed

(Intercept) 1999 -7.111 -0.047192 3.9041 -7.090

income 1999 0.701 -0.000903 0.1154 0.702

education 1999 0.485 0.001835 0.0937 0.487

Examining the jackknife-after-bootstrap plot for the fixed-x resampling results (Figure 4) pro-
vides some insight into the properties of the method:

par(mfcol=c(2, 1))

jack.after.boot(duncan.fix.boot, index=2, main="(a) income coefficient")

jack.after.boot(duncan.fix.boot, index=3, main="(b) education coefficient")

The quantile traces in Figure 4 are much less variable than in Figure 3 for random-x resam-
pling, because in fixed-x resampling residuals are decoupled from the original observations. In
effect, fixed-x resampling enforces the assumption that the errors are identically distributed by re-
sampling residuals from a common distribution. Consequently, if the model is incorrectly specified
— for example, if there is unmodeled nonlinearity, non-constant error variance, or outliers — these
characteristics will not carry over into the resampled data sets. For this reason, it may be preferable
to perform random-x resampling even when it makes sense to think of the model matrix as fixed.

Boot does not allow method="residual" for generalized linear models; see Davison and Hinkley
(1997) for a discussion of the methodology, and its problems.

13

−2 −1 0 1 2 3

−
0.

3
−

0.
1

0.
1

(a) income coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* * *** **** *** ******
*** ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * *
* * *** **** *** ********* ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * *

* * *** **** *** ********* ******** * *** *** ** *** * * * ** * *** **** *** ********* ******** * *** *** ** *** * * * *
* * *** **** *** ********* ******** * *** *** ** *** * * * *

2 27 23 38 33 11 40 18 25
7 9 31 45 8 36 3 34 42

30 20 1915 2829 10 41 1
13 37 1716 1424 4 39 32

5 35 4426 43 12 6 22 21

−2 −1 0 1 2

−
0.

3
−

0.
1

0.
1

0.
2

(b) education coefficient

standardized jackknife value

5,
 1

0,
 1

6,
 5

0,
 8

4,
 9

0,
 9

5
%

−
ile

s
of

 (
T

*−
t)

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *
* ** * *** *** * * * ******* ******* ** ****** **** * * * ** *

21 8 25 34 17 18 40 45 27
41 26 11 13 6 36 30 19 35

3 1 12 37 16 43 24 7 2
22 32 5 14 38 31 29 23 9

42 4 20 44 39 10 33 15 28

Figure 4: Jackknife-after-bootstrap plot for the income (a) and education (b) coefficients in the
Huber regression for Duncan’s occupational-prestige data, using fixed-x resampling.

14

4 Bootstrap Hypothesis Tests

Tests for individual coefficients equal to zero can be found by inverting a confidence interval: if the
hypothesized value does not fall in a 95% confidence interval, for example, then the significance
level of the test is less than (100− 95)/100 = 0.05.

We will consider one specific testing problem. Imagine that in Duncan’s regression, we want
to use the robust-regression estimator to test the hypothesis that the income and education co-
efficients are the same, H0: β1 = β2. This hypothesis arguably makes some sense, because both
predictors are scaled as percentages. We could test the hypothesis with the Wald statistic

z =
b1 − b2(0, 1,−1)V̂ar(b)

 0
1
−1

1/2

where b is the vector of estimated regression coefficients; b1 and b2 are respectively the income

and education coefficients; and V̂ar(b) is the estimated asymptotic covariance matrix of the co-
efficients. If we can trust the asymptotic normality of b and its asymptotic covariance matrix,
then z is distributed as a standard normal variable under the null hypothesis. The numerator and
denominator of z are easily computed with the car function deltaMethod:6

(d <- deltaMethod(mod.duncan.hub, "income - education"))

Estimate SE 2.5 % 97.5 %

income - education 0.216 0.184 -0.1446 0.5766

The output from deltaMethod is a data frame with one row and two columns, so z is then

(z.diff <- d[1, 1] / d[1, 2])

[1] 1.174

The function deltaMethod can be used for any linear or nonlinear combination of the coefficients.
The corresponding significance level of the test, assuming asymptotic normality for z, is

c(two.tail.p=2*pnorm(z.diff, lower.tail=FALSE))

two.tail.p

0.2404

In a small sample such as this, however, we may be more comfortable relying on the bootstrap
to get a significance level.

This test is easily computed: To use Boot, we write a function f.diff:

6The linearHypothesis function in the car package fails for this model because objects produced by rlm inherit
from class "lm" and the "lm" method for linearHypothesis does not work with "rlm" objects; one could, however,
apply the default method car:::linearHypothesis.default to produce the same results as deltaMethod.

15

z−diff

D
en

si
ty

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normal Density
Kernel Density
Obs. Value

Figure 5: Distribution of the bootstrapped test statistic z∗ for the hypothesis that the coefficients
of income and education are equal.

f.diff <- function(mod){

d <- deltaMethod(mod, "income-education")

d[1, 1]/d[1, 2]

}

and then the call to Boot is

set.seed(2468) # for reproducibility

boot.diff <- Boot(mod.duncan.hub, R=999, f=f.diff,

labels="z-diff", method="residual")

hist(boot.diff, ci="none")

The histogram is shown in Figure 5. More of the bootstrap density is to the right of the observed
value of z than is modeled by fitting a normal distribution,

The two-tailed p-value based on this bootstrap is estimated by the fraction of bootstrap values
|z∗| > |z|, which we compute as

R <- 1999

c(bootp =

(1 + sum(abs(boot.diff$t[, 1]) > abs(boot.diff$t0[1])))

/ (R + 1))

bootp

0.2855

16

In this expression boot.diff$t[, 1] is the vector of bootstrapped values z∗ and boot.diff$t0[1]

is the observed value z. We added one to the numerator and denominator to improve accuracy.
Testing in general using the bootstrap is potentially complex and beyond the purpose of this

appendix. We recommend Davison and Hinkley (1997, Sec. 6.3.2) for a discussion of testing in the
regression context.

5 Using Boot With Other Regression Modeling Functions

The Boot function was originally written specifically for regression models similar to a glm model,
like the rlm function used earlier as an example. Thanks to Achim Zeileis, the class of regression
models that can be used is greatly expanded. We will illustrate by fitting using the betareg package
for fitting regression with beta-distributed response,7

library("betareg")

data("ReadingSkills", package = "betareg")

m <- betareg(accuracy ~ iq * dyslexia | iq + dyslexia, data = ReadingSkills)

summary(m)

##

Call:

betareg(formula = accuracy ~ iq * dyslexia | iq + dyslexia, data = ReadingSkills)

##

Standardized weighted residuals 2:

Min 1Q Median 3Q Max

-2.390 -0.642 0.157 0.852 1.645

##

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.123 0.143 7.86 3.7e-15

iq 0.486 0.133 3.65 0.00026

dyslexia -0.742 0.143 -5.20 2.0e-07

iq:dyslexia -0.581 0.133 -4.38 1.2e-05

##

Phi coefficients (precision model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.304 0.223 14.84 < 2e-16

iq 1.229 0.267 4.60 4.2e-06

dyslexia 1.747 0.262 6.66 2.8e-11

##

Type of estimator: ML (maximum likelihood)

Log-likelihood: 65.9 on 7 Df

Pseudo R-squared: 0.576

Number of iterations: 25 (BFGS) + 1 (Fisher scoring)

The betareg function fits two linear predictors, one for a mean model, and a second linear
predictor for a precision model. The response accuracy is a rate between zero and one. The

7You may need to install the betareg package to reproduce this example.

17

predictors are an indicator for dysleia and a continuous predictor iq of non-verbal IQ. The beta
distribution has two parameters that can be viewed as a mean parameter and a precision parameter,
and hence the need for two linear predictors. The bootstrap can be used estimate the precision of
the estimates.

To apply the Boot function, the following functions must exist and return values for the regres-
sion object

1. The object must have an update method, as do most modeling functions

2. The function that created the object must have a subset argument, as do most functions
that have a data argument.

3. For an object named m, the call residuals(m, type="pearson") must return a vector of
residuals. If this is not the case, and you have another function (say, myres) that returns
Pearson residuals, you can create a method. First, find the class of the object,

class(m)

[1] "betareg"

Then create the method:

residuals.betareg <- function(object, type="pearson") {myres(object)}

This is unnecessary for betareg objects, as it already has a residuals method.

4. For an object named m, the call fitted(m) must return a vector of fitted values. This function
exists for betareg objects; if it didn’t you would need to write a fitted.betareg method, if
m were of class betareg. This is unnecessary for betareg objects since the required fitted

method already exists.

5. The function call hatvalues(m) must return a vector of leverages, also called hat values.
This is used to improve the performance of the bootstrap, but simply returning the value 1
will work. If your regression function does not have a hatvalues method, we suggest using,
for a regression object of class myobj,

hatvalues.myobj <- function(object) 1

Since betareg has all the requisite functions, the use of Boot is straightforward:

b <- Boot(m, R = 250)

sqrt(diag(vcov(b)))

(Intercept) iq dyslexia iq:dyslexia

0.1918 0.1780 0.1928 0.1900

(phi)_(Intercept) (phi)_iq (phi)_dyslexia

0.3103 0.6375 0.3877

18

This has returned the bootstrapped standard errors.
In this second example we illustrate passing additional arguments ot boot using an example

from the crch package that fits censored regression with conditional heteroscedasticy. See the help
for the package and for the data set for more details about the models fit.

library("crch")

data pre-processing

data("RainIbk", package = "crch")

RainIbk$sqrtensmean <- apply(sqrt(RainIbk[,grep('^rainfc',names(RainIbk))]), 1, mean)

RainIbk$sqrtenssd <- apply(sqrt(RainIbk[,grep('^rainfc',names(RainIbk))]), 1, sd)

m <- crch(sqrt(rain) ~ sqrtensmean | sqrtenssd, data = RainIbk,

dist = "logistic", left = 0)

We fit a bootstrap three times, each using the same starting value for random numbers, to
illustrate reducing processing time.

set.seed(1); system.time(b1 <- Boot(m, R = 250))

user system elapsed

45.39 0.02 45.42

set.seed(1); system.time(b2 <- Boot(m, R = 250, start = TRUE))

user system elapsed

28.23 0.03 28.27

set.seed(1); system.time(b3 <- Boot(m, R = 250, start = TRUE,

parallel = "multicore", ncpus = 2))

user system elapsed

29.26 0.00 29.31

sapply(list(b1, b2, b3), function(b) sqrt(diag(vcov(b))))

[,1] [,2] [,3]

(Intercept) 0.07071 0.07070 0.07070

sqrtensmean 0.01971 0.01971 0.01971

(scale)_(Intercept) 0.04146 0.04146 0.04146

(scale)_sqrtenssd 0.03116 0.03116 0.03116

6 Concluding Remarks

Extending random-x resampling to other sorts of parametric regression models, such as generalized
linear models, is straightforward. In many instances, however, fixed-x resampling requires special
treatment, as does resampling for nonparametric regression.

The discussion in the preceding sections assumes independent random sampling, but bootstrap
methods can easily be adapted to other sampling schemes. For example, in stratified sampling,

19

bootstrap resampling is simply performed within strata, building up a bootstrap sample much as
the original sample was composed from subsamples for the strata. Likewise, in a cluster sample, we
resample clusters rather than individual observations. If the elements of the sample were selected
with unequal probability, then so must the elements of each bootstrap sample.

The essential point is to preserve the analogy between the selection of the original sample from
the population and the selection of each bootstrap sample from the original sample. Indeed, one
of the attractions of the bootstrap is that it can provide correct statistical inference for complex
sampling designs which often are handled by ad-hoc methods.8 The software in the boot package
can accommodate these complications; see, in particular, the stype and strata arguments to the
boot function.

7 Complementary Reading and References

Efron and Tibshirani (1993) and Davison and Hinkley (1997) provide readable book-length treat-
ments of the bootstrap. For shorter presentations, see Fox (2008, chap. 21), Weisberg (2005, sec. 4.6)
and Stine (1990).

References

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and their Application. Cambridge
University Press, Cambridge.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7:1–26.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New
York.

Fox, J. (2008). Applied Regression Analysis and Generalized Linear Models. Sage, Thousand Oaks,
CA, second edition.

Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. Sage, Thousand Oaks,
CA, second edition.

Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons, Hoboken,
NJ.

Stine, R. (1990). An introduction to bootstrap methods: examples and ideas. In Fox, J. and Long,
J. S., editors, Modern Methods of Data Analysis, pages 325–373. Sage, Newbury Park, CA.

Weisberg, S. (2005). Applied Linear Regression. John Wiley & Sons, Hoboken, NJ, third edition.

8The survey package for R (Lumley, 2010) has extensive facilities for statistical inference in complex sample
surveys.

20

