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Abstract

Survival analysis examines and models the time it takes for events to occur, termed survival
time. The Cox proportional-hazards regression model is the most common tool for studying the
dependency of survival time on predictor variables. This appendix to Fox and Weisberg (2019)
briefly describes the basis for the Cox regression model, and explains how to use the survival
package in R to estimate Cox regressions.

1 Introduction

Survival analysis examines and models the time it takes for events to occur. The prototypical such
event is death, from which the name “survival analysis” and much of its terminology derives, but the
ambit of application of survival analysis is much broader. Essentially the same methods are employed
in a variety of disciplines under various rubrics—for example, “event-history analysis” in sociology
and “failure-time analysis” in engineering. In this appendix, therefore, terms such as survival are to
be understood generically.

Survival analysis focuses on the distribution of survival times. Although there are well known
methods for estimating unconditional survival distributions, most interesting survival modeling ex-
amines the relationship between survival and one or more predictors, usually termed covariates in the
survival-analysis literature. The subject of this appendix is the Cox proportional-hazards regression
model introduced in a seminal paper by Cox, 1972, a broadly applicable and the most widely used
method of survival analysis. The survival package in R (Therneau, 1999; Therneau and Grambsch,
2000) fits Cox models, as we describe here, and most other commonly used survival methods.1

As is the case for the other on-line appendices to An R Companion to Applied Regression, we
assume that you have read the R Companion and are therefore familiar with R.2 In addition, we
assume familiarity with Cox regression. We nevertheless begin with a review of basic concepts,
primarily to establish terminology and notation. The second section of the appendix takes up the
Cox proportional-hazards model with time-independent covariates. Time-dependent covariates are
introduced in the third section. A fourth and final section deals with diagnostics.

1The survival package is one of the “recommended” packages that are included in the standard R distribution. The
package must be loaded via the command library("survival").

2Most R functions used but not described in this appendix are discussed in Fox and Weisberg (2019). All the R
code used in this appendix can be downloaded from http://tinyurl.com/carbook or via the carWeb() function in
the car package.
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2 Basic Concepts and Notation

Let T represent survival time. We regard T as a random variable with cumulative distribution
function P (t) = Pr(T ≤ t) and probability density function p(t) = dP (t)/dt.3 The more optimistic
survival function S(t) is the complement of the distribution function, S(t) = Pr(T > t) = 1− P (t).
A fourth representation of the distribution of survival times is the hazard function, which assesses
the instantaneous risk of demise at time t, conditional on survival to that time:

h(t) = lim
∆t→0

Pr [(t ≤ T < t+ ∆t)|T ≥ t]
∆t

=
p(t)

S(t)

Models for survival data usually employ the hazard function or the log hazard. For example,
assuming a constant hazard, h(t) = ν, implies an exponential distribution of survival times, with
density function p(t) = νe−νt. Other common hazard models include

log h(t) = ν + ρt

which leads to the Gompertz distribution of survival times, and

log h(t) = ν + ρ log(t)

which leads to the Weibull distribution of survival times. (See, for example, Cox and Oakes, 1984,
Sec. 2.3, for these and other possibilities.) In both the Gompertz and Weibull distributions, the
hazard can either increase or decrease with time; moreover, in both instances, setting ρ = 0 yields
the exponential model.

A nearly universal feature of survival data is censoring, the most common form of which is
right-censoring : Here, the period of observation expires, or an individual is removed from the study,
before the event occurs—for example, some individuals may still be alive at the end of a clinical
trial, or may drop out of the study for various reasons other than death prior to its termination. A
case is left-censored if its initial time at risk is unknown. Indeed, the same case may be both right
and left-censored, a circumstance termed interval-censoring. Censoring complicates the likelihood
function, and hence the estimation, of survival models.

Moreover, conditional on the value of any covariates in a survival model and on an individual’s
survival to a particular time, censoring must be independent of the future value of the hazard for the
individual. If this condition is not met, then estimates of the survival distribution can be seriously
biased. For example, if individuals tend to drop out of a clinical trial shortly before they die, and
therefore their deaths go unobserved, survival time will be over-estimated. Censoring that meets
this requirement is noninformative. A common instance of noninformative censoring occurs when a
study terminates at a predetermined date.

3 The Cox Proportional-Hazards Model

Survival analysis typically examines the relationship of the survival distribution to covariates. Most
commonly, this examination entails the specification of a linear-like model for the log hazard. For
example, a parametric model based on the exponential distribution may be written as

log hi(t) = α+ β1xi1 + β2xi2 + · · ·+ βkxik

3If you’re unfamiliar with calculus, the essence of the matter here is that areas under the density function p(t)
represent probabilities of death in a given time interval, while the distribution function P (t) represents the probability
of death by time t.
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or, equivalently,
hi(t) = exp(α+ β1xi1 + β2xi2 + · · ·+ βkxik)

that is, as a linear model for the log-hazard or as a multiplicative model for the hazard. Here, i
is a subscript for case, and the xs are the covariates. The constant α in this model represents a
kind of baseline log-hazard, because log hi(t) = α, or hi(t) = eα, when all of the xs are zero. There
are similar parametric regression models based on the other survival distributions described in the
preceding section.4

The Cox model, in contrast, leaves the baseline hazard function α(t) = log h0(t) unspecified:

log hi(t) = α(t) + β1xi1 + β2xi2 + · · ·+ βkxik

or, again equivalently,
hi(t) = h0(t) exp(β1xi1 + β2xi2 + · · ·+ βkxik)

This model is semi-parametric because while the baseline hazard can take any form, the covariates
enter the model linearly. Consider, now, two cases i and i′ that differ in their x-values, with the
corresponding linear predictors

ηi = β1xi1 + β2xi2 + · · ·+ βkxik

and
ηi′ = β1xi′1 + β2xi′2 + · · ·+ βkxi′k

The hazard ratio for these two cases,

hi(t)

hi′(t)
=

h0(t)eηi

h0(t)eηi′

=
eηi

eηi′

is independent of time t. Consequently, the Cox model is a proportional-hazards model.
Remarkably, even though the baseline hazard is unspecified, the Cox model can still be esti-

mated by the method of partial likelihood, developed by Cox (1972) in the same paper in which he
introduced what came to called the Cox model. Although the resulting estimates are not as efficient
as maximum-likelihood estimates for a correctly specified parametric hazard regression model, not
having to make arbitrary, and possibly incorrect, assumptions about the form of the baseline hazard
is a compensating virtue of Cox’s specification. Having fit the model, it is possible to extract an
estimate of the baseline hazard (see below).

3.1 The coxph() Function

The Cox proportional-hazards regression model is fit in R with the coxph() function, located in the
survival package:

library("survival")

args(coxph)

function (formula, data, weights, subset, na.action, init, control,

ties = c("efron", "breslow", "exact"), singular.ok = TRUE,

robust, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,

id, cluster, istate, statedata, nocenter = c(-1, 0, 1), ...)

NULL

4The survreg() function in the survival package fits the exponential model and other parametric accelerated failure
time models. Because the Cox model is now used much more frequently than parametric survival regression models,
we will not describe survreg() in this appendix. Enter ?survreg and see Therneau (1999) for details.
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Most of the arguments to coxph(), including data, weights, subset, na.action, singular.ok,
model, x and y, are familiar from lm() (see Chapter 4 of the Companion, especially Section 4.9).
The formula argument is a little different. The right-hand side of the formula for coxph() is the
same as for a linear model.5 The left-hand side is a survival object, created by the Surv() function.
In the simple case of right-censored data, the call to Surv() takes the form Surv(time, event ),
where time is either the event time or the censoring time, and event is a dummy variable coded
1 if the event is observed or 0 if the case is censored. See Section 4 below and, more generally, the
on-line help for Surv() for other possibilities.

Among the remaining arguments to coxph():

• init (initial values) and control are technical arguments: See the on-line help for coxph()

for details.

• method indicates how to handle cases that have tied (i.e., identical) survival times. The default
"efron" method is generally preferred to the once-popular "breslow" method; the "exact"

method is much more computationally intensive.

• If robust is TRUE, coxph() calculates robust coefficient-variance estimates. The default is
FALSE, unless the model includes non-independent cases, specified by the cluster() function
in the model formula. We do not describe Cox regression for clustered data in this appendix.

3.2 An Illustration: Recidivism

The Rossi data set in the carData package contains data from an experimental study of recidivism
of 432 male prisoners, who were observed for a year after being released from prison (Rossi et al.,
1980). The following variables are included in the data; the variable names are those used by Allison
(1995), from whom this example and variable descriptions are adapted:

• week: week of first arrest after release, or censoring time.

• arrest: the event indicator, equal to 1 for those arrested during the period of the study and
0 for those who were not arrested.

• fin: a factor, with levels "yes" if the individual received financial aid after release from
prison, and "no" if he did not; financial aid was a randomly assigned factor manipulated by
the researchers.

• age: in years at the time of release.

• race: a factor with levels "black" and "other".

• wexp: a factor with levels "yes" if the individual had full-time work experience prior to incar-
ceration and "no" if he did not.

• mar: a factor with levels "married" if the individual was married at the time of release and
"not married" if he was not.

• paro: a factor coded "yes" if the individual was released on parole and "no" if he was not.

• prio: number of prior convictions.

5There are, however, special functions cluster() and strata() that may be included on the right side of the model
formula. The cluster() function is used to specify non-independent cases (such as several individuals in the same
family), and the strata() function may be used to divide the data into sub-groups with potentially different baseline
hazard functions, as explained in Section 5.1.
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• educ: education, a categorical variable coded numerically, with codes 2 (grade 6 or less), 3
(grades 6 through 9), 4 (grades 10 and 11), 5 (grade 12), or 6 (some post-secondary).6

• emp1–emp52: factors coded "yes" if the individual was employed in the corresponding week of
the study and "no" otherwise.

We read the data file into a data frame, and print the first few cases (omitting the variables emp1
– emp52, which are in columns 11–62 of the data frame):

library("carData")

Rossi[1:5, 1:10]

week arrest fin age race wexp mar paro prio educ

1 20 1 no 27 black no not married yes 3 3

2 17 1 no 18 black no not married yes 8 4

3 25 1 no 19 other yes not married yes 13 3

4 52 0 yes 23 black yes married yes 1 5

5 52 0 no 19 other yes not married yes 3 3

Thus, for example, the first individual was arrested in week 20 of the study, while the fourth indi-
vidual was never rearrested, and hence has a censoring time of 52.

Following Allison, a Cox regression of time to rearrest on the time-constant covariates is specified
as follows:

mod.allison <- coxph(Surv(week, arrest) ~

fin + age + race + wexp + mar + paro + prio,

data=Rossi)

mod.allison

Call:

coxph(formula = Surv(week, arrest) ~ fin + age + race + wexp +

mar + paro + prio, data = Rossi)

coef exp(coef) se(coef) z p

finyes -0.379 0.684 0.191 -2.0 0.047

age -0.057 0.944 0.022 -2.6 0.009

raceother -0.314 0.731 0.308 -1.0 0.308

wexpyes -0.150 0.861 0.212 -0.7 0.480

marnot married 0.434 1.543 0.382 1.1 0.256

paroyes -0.085 0.919 0.196 -0.4 0.665

prio 0.091 1.096 0.029 3.2 0.001

Likelihood ratio test=33 on 7 df, p=2.4e-05

n= 432, number of events= 114

The summary() method for Cox models produces a more complete report:

summary(mod.allison)

Call:

coxph(formula = Surv(week, arrest) ~ fin + age + race + wexp +

6Following Allison (2010), educ is not used in the examples reported below. We reinvite the reader to redo our
examples adding educ as a predictor.
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mar + paro + prio, data = Rossi)

n= 432, number of events= 114

coef exp(coef) se(coef) z Pr(>|z|)

finyes -0.3794 0.6843 0.1914 -1.98 0.0474

age -0.0574 0.9442 0.0220 -2.61 0.0090

raceother -0.3139 0.7306 0.3080 -1.02 0.3081

wexpyes -0.1498 0.8609 0.2122 -0.71 0.4803

marnot married 0.4337 1.5430 0.3819 1.14 0.2561

paroyes -0.0849 0.9186 0.1958 -0.43 0.6646

prio 0.0915 1.0958 0.0286 3.19 0.0014

exp(coef) exp(-coef) lower .95 upper .95

finyes 0.684 1.461 0.470 0.996

age 0.944 1.059 0.904 0.986

raceother 0.731 1.369 0.399 1.336

wexpyes 0.861 1.162 0.568 1.305

marnot married 1.543 0.648 0.730 3.261

paroyes 0.919 1.089 0.626 1.348

prio 1.096 0.913 1.036 1.159

Concordance= 0.64 (se = 0.027 )

Likelihood ratio test= 33.3 on 7 df, p=2e-05

Wald test = 32.1 on 7 df, p=4e-05

Score (logrank) test = 33.5 on 7 df, p=2e-05

• The column marked z in the output records the ratio of each regression coefficient to its
standard error, a Wald statistic which is asymptotically standard normal under the hypothesis
that the corresponding β is zero. The coefficients for the covariates age and prio (prior
convictions) have very small p-values, while the coefficient for fin (financial aid—the focus of
the study) has a p-value only slightly less than 0.05.

• The exponentiated coefficients in the second column of the first panel (and in the first column
of the second panel) of the output are interpretable as multiplicative effects on the hazard.
Thus, for example, holding the other covariates constant, an additional year of age reduces
the weekly hazard of rearrest by a factor of eb2 = 0.944 on average—that is, by 5.6 percent.
Similarly, each prior conviction increases the hazard by a factor of 1.096, or 9.6 percent.

• The likelihood-ratio, Wald, and score chi-square statistics at the bottom of the output are
asymptotically equivalent tests of the omnibus null hypothesis that all of the βs are zero. In
this instance, the test statistics are in close agreement, and the omnibus null hypothesis is
soundly rejected.

The Anova() function in the car package has a method for "coxph" objects, by default computing
Type-II likelihood-ratio tests for the terms in the model:

library("car")

Anova(mod.allison)

Analysis of Deviance Table (Type II tests)

LR Chisq Df Pr(>Chisq)

fin 3.99 1 0.0459
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Figure 1: Estimated survival function Ŝ(t) for the Cox regression of time to rearrest on several
predictors. The broken lines show a point-wise 95-percent confidence envelope around the survival
function.

age 7.99 1 0.0047

race 1.13 1 0.2888

wexp 0.50 1 0.4794

mar 1.43 1 0.2316

paro 0.19 1 0.6655

prio 8.98 1 0.0027

Having fit a Cox model to the data, it is often of interest to examine the estimated distribution
of survival times. The survfit() function estimates S(t), by default at the mean values of the
covariates. The plot() method for objects returned by survfit() graphs the estimated surivival
function, along with a point-wise 95-percent confidence band. For example, for the model just fit to
the recidivism data:

plot(survfit(mod.allison), ylim=c(0.7, 1), xlab="Weeks",

ylab="Proportion Not Rearrested")

This command produces Figure 1. The limits for the vertical axis, set by ylim=c(0.7, 1), were
selected after examining an initial plot.

Even more cogently, we may wish to display how estimated survival depends upon the value
of a covariate. Because the principal purpose of the recidivism study was to assess the impact of
financial aid on rearrest, we focus on this covariate. We construct a new data frame with two rows,
one for each value of fin; the other covariates are fixed to their average values. For a dummy
covariate, such as the contrast associated with race, the average value is the proportion coded 1
in the data set—in the case of race, the proportion of non-blacks (cf., the discussion of predictors
effect displays in Section 4.3 of the R Companion.). This data frame is passed to survfit() via the
newdata argument:

Rossi.fin <- with(Rossi, data.frame(fin=c(0, 1),

age=rep(mean(age), 2), race=rep(mean(race == "other"), 2),
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fin = no
fin = yes

Figure 2: Estimated survival functions for those receiving (fin = yes) and not receiving (fin = no)
financial aid. Other covariates are fixed at their average values. Each estimate is accompanied by a
point-wise 95-percent confidence envelope.

wexp=rep(mean(wexp == "yes"), 2), mar=rep(mean(mar == "not married"), 2),

paro=rep(mean(paro == "yes"), 2), prio=rep(mean(prio), 2)))

plot(survfit(mod.allison, newdata=Rossi.fin), conf.int=TRUE,

lty=c(1, 2), ylim=c(0.6, 1), xlab="Weeks",

ylab="Proportion Not Rearrested")

legend("bottomleft", legend=c("fin = no", "fin = yes"), lty=c(1 ,2), inset=0.02)

Warning messages:

1: In model.frame.default(Terms2, newdata, xlev = object$xlevels) :

variable 'fin' is not a factor

2: In model.frame.default(Terms2, newdata, xlev = object$xlevels) :

variable 'race' is not a factor

3: In model.frame.default(Terms2, newdata, xlev = object$xlevels) :

variable 'wexp' is not a factor

4: In model.frame.default(Terms2, newdata, xlev = object$xlevels) :

variable 'mar' is not a factor

5: In model.frame.default(Terms2, newdata, xlev = object$xlevels) :

variable 'paro' is not a factor

The survfit() command generates warnings because we supplied numerical values for factors (e.g.,
the proportion of non-blacks for the factor race), but the computation is performed correctly. We
specified two additional arguments to plot(): lty=c(1, 2) indicates that the survival function for
the first group (i.e., for fin = no) will be plotted with a solid line, while that for the second group
(fin = yes) will be plotted with a broken line; conf.int=TRUE requests that confidence envelopes
be drawn around each estimated survival function (which is not the default when more than one
survival function is plotted). We used the legend() function to place a legend on the plot.7 The

7The plot() method for "survfit" objects can also draw a legend on the plot, but separate use of the legend()
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resulting graph, which appears in Figure 2, shows the higher estimated “survival” of those receiving
financial aid, but the two confidence envelopes overlap substantially, even after 52 weeks.

4 Time-Dependent Covariates

The coxph() function handles time-dependent covariates by requiring that each time period for
an individual appear as a separate “case”—that is, as a separate row (or record) in the data set.
Consider, for example, the Rossi data frame, and imagine that we want to treat weekly employment
as a time-dependent predictor of time to rearrest. As is often the case, however, the data for each
individual appears as a single row, with the weekly employment indicators as 52 columns in the data
frame, with names emp1 through emp52; for example, for the first person in the study:

Rossi[1, ]

week arrest fin age race wexp mar paro prio educ emp1 emp2 emp3 emp4 emp5

1 20 1 no 27 black no not married yes 3 3 no no no no no

emp6 emp7 emp8 emp9 emp10 emp11 emp12 emp13 emp14 emp15 emp16 emp17 emp18 emp19

1 no no no no no no no no no no no no no no

emp20 emp21 emp22 emp23 emp24 emp25 emp26 emp27 emp28 emp29 emp30 emp31 emp32

1 no <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>

emp33 emp34 emp35 emp36 emp37 emp38 emp39 emp40 emp41 emp42 emp43 emp44 emp45

1 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>

emp46 emp47 emp48 emp49 emp50 emp51 emp52

1 <NA> <NA> <NA> <NA> <NA> <NA> <NA>

The employment indicators are missing after week 20, when individual 1 was rearrested.
To put the data in the requisite form, we need one row for each non-missing period of observation.

To perform this task, we have written a function named unfold(); the function is included with the
script file for this appendix, and takes the following arguments:8

• data: A data frame to be “unfolded” from “wide” to “long” format.

• time: The column number or quoted name of the event/censoring-time variable in data.

• event: The quoted name of the event/censoring indicator variable in data.

• cov: A vector giving the column numbers of the time-dependent covariate in data, or a list of
vectors if there is more than one time-dependent covariate.

• cov.names: A character string or character vector giving the name(s) to be assigned to the
time-dependent covariate(s) in the output data set.

• suffix: The suffix to be attached to the name of the time-to-event variable in the output data
set; defaults to ".time".

• cov.times: The observation times for the covariate values, including the start time. This
argument can take several forms:

function provides greater flexibility. Legends, line types, and other aspects of constructing graphs in R are described
in Chapter 9 of the R Companion.

8This is a slightly simplified version of the unfold() function in the RcmdrPlugin.survival package, which adds
survival-analysis capabilities to the R Commander graphical user interface to R (see Fox, 2017). The Rossi data set is
also included in the RcmdrPlugin.survival package. Our ability to deal with a time-dependent covariate in this relatively
simple manner depends on the regular structure of the Rossi data; for a more general treatment of time-dependent
covariates for coxph() models, see the vignette “Using Time Dependent Covariates” in the survival package, which
may be accessed by the command vignette("timedep", package="survival").
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– The default is the vector of integers from zero to the number of covariate values (i.e.,
containing one more entry—the initial time of observation—than the length of each vector
in cov).

– An arbitrary numerical vector with one more entry than the length of each vector in cov.

– The columns in the input data set that give the (potentially different) covariate observa-
tion times for each individual. There should be one more column than the length of each
vector in cov.

• common.times: A logical value indicating whether the times of observation are the same for
all individuals; defaults to TRUE.

• lag: Number of observation periods to lag each value of the time-dependent covariate(s);
defaults to 0. The use of lag is described later in this section.

Thus, to unfold the Rossi data, we enter:

Rossi.2 <- unfold(Rossi, time="week",

event="arrest", cov=11:62, cov.names="employed")

> Rossi.2[1:50, ]

start stop arrest.time week arrest fin age race wexp mar paro prio educ employed

1.1 0 1 0 20 1 no 27 black no not married yes 3 3 no

1.2 1 2 0 20 1 no 27 black no not married yes 3 3 no

. . .

1.19 18 19 0 20 1 no 27 black no not married yes 3 3 no

1.20 19 20 1 20 1 no 27 black no not married yes 3 3 no

2.1 0 1 0 17 1 no 18 black no not married yes 8 4 no

2.2 1 2 0 17 1 no 18 black no not married yes 8 4 no

. . .

2.16 15 16 0 17 1 no 18 black no not married yes 8 4 no

2.17 16 17 1 17 1 no 18 black no not married yes 8 4 no

3.1 0 1 0 25 1 no 19 other yes not married yes 13 3 no

3.2 1 2 0 25 1 no 19 other yes not married yes 13 3 no

. . .

3.13 12 13 0 25 1 no 19 other yes not married yes 13 3 no

Once the data set is constructed, it is simple to use coxph() to fit a model with time-dependent
covariates. The right-hand-side of the model is essentially the same as before, but both the start
and end times of each interval are specified in the call to Surv(), in the form Surv(start, stop,

event ). Here, event is the time-dependent version of the event indicator variable, equal to 1 only
in the time-period during which the event occurs. For the example:

mod.allison.2 <- coxph(Surv(start, stop, arrest.time) ~

fin + age + race + wexp + mar + paro + prio + employed,

data=Rossi.2)

summary(mod.allison.2)

Call:

coxph(formula = Surv(start, stop, arrest.time) ~ fin + age +

race + wexp + mar + paro + prio + employed, data = Rossi.2)

n= 19809, number of events= 114

coef exp(coef) se(coef) z Pr(>|z|)

finyes -0.3567 0.7000 0.1911 -1.87 0.0620
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age -0.0463 0.9547 0.0217 -2.13 0.0330

raceother -0.3387 0.7127 0.3096 -1.09 0.2740

wexpyes -0.0256 0.9748 0.2114 -0.12 0.9038

marnot married 0.2937 1.3414 0.3830 0.77 0.4431

paroyes -0.0642 0.9378 0.1947 -0.33 0.7416

prio 0.0851 1.0889 0.0290 2.94 0.0033

employedyes -1.3283 0.2649 0.2507 -5.30 1.2e-07

exp(coef) exp(-coef) lower .95 upper .95

finyes 0.700 1.429 0.481 1.018

age 0.955 1.047 0.915 0.996

raceother 0.713 1.403 0.388 1.308

wexpyes 0.975 1.026 0.644 1.475

marnot married 1.341 0.745 0.633 2.842

paroyes 0.938 1.066 0.640 1.374

prio 1.089 0.918 1.029 1.152

employedyes 0.265 3.775 0.162 0.433

Concordance= 0.708 (se = 0.023 )

Likelihood ratio test= 68.7 on 8 df, p=9e-12

Wald test = 56.1 on 8 df, p=3e-09

Score (logrank) test = 64.5 on 8 df, p=6e-11

4.1 Lagged Covariates

The last analysis suggests that time-dependent employment covariate has an apparently large effect,
as the hazard of rearrest is smaller by a factor of e−1.3282 = 0.265 (i.e., a decline of 73.5 percent)
during a week in which the former inmate was employed. As Allison (2010) points out, however, the
direction of causality here is ambiguous, because a person cannot work when he is in jail. One way
of addressing this problem is to use instead a lagged value of employment, from the previous week
for example. The unfold() function can easily provide lagged time-dependent covariates:

Rossi.3 <- unfold(Rossi, "week", "arrest", 11:62, "employed", lag=1)

mod.allison.3 <- coxph(Surv(start, stop, arrest.time) ~

fin + age + race + wexp + mar + paro + prio + employed,

data=Rossi.3)

summary(mod.allison.3)

Call:

coxph(formula = Surv(start, stop, arrest.time) ~ fin + age +

race + wexp + mar + paro + prio + employed, data = Rossi.3)

n= 19377, number of events= 113

coef exp(coef) se(coef) z Pr(>|z|)

finyes -0.3513 0.7038 0.1918 -1.83 0.06703

age -0.0498 0.9514 0.0219 -2.27 0.02297

raceother -0.3215 0.7251 0.3091 -1.04 0.29837

wexpyes -0.0476 0.9535 0.2132 -0.22 0.82321

marnot married 0.3448 1.4116 0.3832 0.90 0.36831

paroyes -0.0471 0.9540 0.1963 -0.24 0.81038

prio 0.0920 1.0964 0.0288 3.19 0.00140

11



employedyes -0.7869 0.4553 0.2181 -3.61 0.00031

exp(coef) exp(-coef) lower .95 upper .95

finyes 0.704 1.421 0.483 1.025

age 0.951 1.051 0.911 0.993

raceother 0.725 1.379 0.396 1.329

wexpyes 0.953 1.049 0.628 1.448

marnot married 1.412 0.708 0.666 2.992

paroyes 0.954 1.048 0.649 1.402

prio 1.096 0.912 1.036 1.160

employedyes 0.455 2.197 0.297 0.698

Concordance= 0.67 (se = 0.026 )

Likelihood ratio test= 47.2 on 8 df, p=1e-07

Wald test = 43.4 on 8 df, p=7e-07

Score (logrank) test = 46.4 on 8 df, p=2e-07

The coefficient for the now-lagged employment indicator still has a small p-value, but the estimated
effect of employment, though substantial, is much smaller than before: e−0.7869 = 0.455 (or a
decrease of 54.5 percent).

5 Model Diagnostics

As is the case for a linear or generalized linear model (see Chapter 8 of the R Companion), it is
desirable to determine whether a fitted Cox regression model adequately describes the data. We will
briefly consider three kinds of diagnostics: for violation of the assumption of proportional hazards; for
influential data; and for nonlinearity in the relationship between the log hazard and the covariates.
All of these diagnostics use the residuals() method for "coxph" objects, which calculates several
kinds of residuals, along with some quantities that are not normally thought of as residuals. Details
are in Therneau (1999).

5.1 Checking Proportional Hazards

Tests and graphical diagnostics for proportional hazards may be based on the scaled Schoenfeld
residuals; these can be obtained directly as residuals(model, "scaledsch"), where model is a
"coxph" model object. The matrix returned by residuals() has one column for each covariate in
the model. More conveniently, the cox.zph() function calculates tests of the proportional-hazards
assumption for each covariate, by correlating the corresponding set of scaled Schoenfeld residuals
with a suitable transformation of time [the default is based on the Kaplan-Meier estimate of the
survival function, K(t)].

We will illustrate these tests with a scaled-down version of the Cox regression model fit to the
recidivism data in Section 3.2, eliminating the covariates whose coefficients had large p-values:9

mod.allison.4 <- coxph(Surv(week, arrest) ~ fin + age + prio,

data=Rossi)

mod.allison.4

Call:

coxph(formula = Surv(week, arrest) ~ fin + age + prio, data = Rossi)

9It is possible that a covariate whose coefficients has a large p-value when its effect is, in essence, averaged over
time nevertheless has a important interaction with time, which manifests itself as nonproportional hazards. We leave
it to the reader to check for this possibility using the model fit originally to the recidivism data.

12



coef exp(coef) se(coef) z p

finyes -0.347 0.707 0.190 -1.8 0.068

age -0.067 0.935 0.021 -3.2 0.001

prio 0.097 1.102 0.027 3.6 4e-04

Likelihood ratio test=29 on 3 df, p=2.2e-06

n= 432, number of events= 114

The coefficient for financial aid, which is the focus of the study, now has a two-sided p-value greater
than 0.05; a one-sided test is appropriate here, however, because we expect the coefficient to be
negative, so there is still marginal evidence for the effect of this covariate on the time of rearrest.

As mentioned, tests for the proportional-hazards assumption are obtained from cox.zph(), which
computes a test for each covariate, along with a global test for the model as a whole:

cox.zph(mod.allison.4)

chisq df p

fin 0.0638 1 0.801

age 6.3255 1 0.012

prio 0.5187 1 0.471

GLOBAL 7.1367 3 0.068

There is, therefore, strong evidence of non-proportional hazards for age, while the global test (on 3
degrees of freedom) has a p-value slightly in excess of 0.05. These tests are sensitive to linear trends
in the hazard.

Plotting the object returned by cox.zph() produces graphs of the scaled Schoenfeld residuals
against transformed time (see Figure 3):

par(mfrow=c(2, 2))

plot(cox.zph(mod.allison.4))

Interpretation of these graphs is greatly facilitated by smoothing, for which purpose cox.zph()

uses a smoothing spline, shown on each graph by a solid line; the broken lines represent ± 2-
standard-error envelopes around the fit. Systematic departures from a horizontal line are indicative
of non-proportional hazards. The assumption of proportional hazards appears to be supported for
the covariates fin (which is, recall, a two-level factor, accounting for the two bands in the graph)
and prio, but there appears to be a trend in the plot for age, with the age effect declining with
time; this effect was also detected in the test reported above.

One way of accommodating non-proportional hazards is to build interactions between covariates
and time into the Cox regression model; such interactions are themselves time-dependent covariates.
For example, based on the diagnostics just examined, it seems reasonable to consider a linear in-
teraction of time and age; using the previously constructed Rossi.2 data frame (the warning that
results can be disregarded):

mod.allison.5 <- coxph(Surv(start, stop, arrest.time) ~

fin + age + age:stop + prio,

data=Rossi.2)

mod.allison.5

Call:

coxph(formula = Surv(start, stop, arrest.time) ~ fin + age +

age:stop + prio, data = Rossi.2)
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Figure 3: Plots of scaled Schoenfeld residuals against transformed time for each covariate in a model
fit to the recidivism data. The solid line is a smoothing spline fit to the plot, with the broken lines
representing a ± 2-standard-error band around the fit.
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coef exp(coef) se(coef) z p

finyes -0.3486 0.7057 0.1902 -1.8 0.067

age 0.0323 1.0328 0.0394 0.8 0.413

prio 0.0982 1.1032 0.0273 3.6 3e-04

age:stop -0.0038 0.9962 0.0015 -2.6 0.009

Likelihood ratio test=36 on 4 df, p=2.8e-07

n= 19809, number of events= 114

Warning in coxph(Surv(start, stop, arrest.time) ~ fin + age + age:stop + :

a variable appears on both the left and right sides of the formula

As expected, the coefficient for the interaction is negative with a small p-value: The effect of age

declines with time.10 The model does not require a “main-effect” term for stop (i.e., time); such a
term would be redundant, because the time effect is the baseline hazard.

An alternative to incorporating an interaction in the model is to divide the data into strata based
on the value of one or more covariates. Each stratum is permitted to have a different baseline hazard
function, while the coefficients of the remaining covariates are assumed to be constant across strata.
An advantage of this approach is that we do not have to assume a particular form of interaction
between the stratifying covariates and time. A disadvantage is the resulting inability to examine the
effects of the stratifying covariates. Stratification is most natural when a covariate takes on only a
few distinct values, and when the effect of the stratifying variable is not of direct interest. In our
example, age takes on many different values, but we can create categories by arbitrarily dissecting
the variable into class intervals. After examining the distribution of age, we decided to define four
intervals: 19 or younger; 20 to 25; 26 to 30; and 31 or older. We use the recode() function in the
car package to categorize age:11

Rossi$age.cat <- recode(Rossi$age, " lo:19=1; 20:25=2; 26:30=3; 31:hi=4 ")

xtabs(~ age.cat, data=Rossi)

age.cat

1 2 3 4

66 236 66 64

Most of the individuals in the data set are in the second age category, 20 to 25, but because this is
a reasonably narrow range of ages, we did not feel the need to sub-divide the category.

A stratified Cox regression model is fit by including a call to the strata() function on the right-
hand side of the model formula. The arguments to this function are one or more stratifying variables;
if there is more than one such variable, then the strata are formed from their cross-classification. In
the current illustration, there is just one stratifying variable:

mod.allison.6 <- coxph(Surv(week, arrest) ~

fin + prio + strata(age.cat), data=Rossi)

mod.allison.6

Call:

coxph(formula = Surv(week, arrest) ~ fin + prio + strata(age.cat),

data = Rossi)

10That is, initially, age has a positive partial effect on the hazard (given by the age coefficient, 0.032), but this
effect gets progressively smaller with time (at the rate −0.0038 per week), becoming negative after about 10 weeks.

11An alternative is to use the standard R function cut(): cut(Rossi$age, c(0, 19, 25, 30, Inf)). See Chapter
2 of the R Companion.

15



coef exp(coef) se(coef) z p

finyes -0.341 0.711 0.190 -1.8 0.07

prio 0.094 1.099 0.027 3.5 5e-04

Likelihood ratio test=13 on 2 df, p=0.0012

n= 432, number of events= 114

cox.zph(mod.allison.6)

chisq df p

fin 0.044 1 0.83

prio 0.660 1 0.42

GLOBAL 0.696 2 0.71

There is no evidence of non-proportional hazards for the remaining covariates.

5.2 Influential Cases

Specifying the argument type=dfbeta to residuals produces a matrix of estimated changes in
the regression coefficients upon deleting each case in turn; likewise, type=dfbetas produces the
estimated changes in the coefficients divided by their standard errors (cf., Sections 8.3 and 8.6.2 of
the R Companion for influence diagnostics for linear and generalized linear models).

For example, for the model regressing time to rearrest on financial aid, age, and number of prior
offenses:

dfbeta <- residuals(mod.allison.4, type="dfbeta")

par(mfrow=c(2, 2))

for (j in 1:3) {

plot(dfbeta[, j], ylab=names(coef(mod.allison.4))[j])

abline(h=0, lty=2)

}

The index plots produced by these commands appear in Figure 4. Comparing the magnitudes of
the largest dfbeta values to the regression coefficients suggests that none of the cases are terribly
influential individually, even though some of the dfbeta values for age are large compared with the
others.12

5.3 Nonlinearity

Nonlinearity—that is, an incorrectly specified functional form in the parametric part of the model—
is a potential problem in Cox regression as it is in linear and generalized linear models (see Sections
8.4.2 and 8.6.3 of the R Companion). The martingale residuals may be plotted against covariates
to detect nonlinearity, and may also be used to form component-plus-residual (or partial-residual)
plots, again in the manner of linear and generalized linear models.

For the regression of time to rearrest on financial aid, age, and number of prior arrests, let us
examine plots of martingale residuals and partial residuals against the last two of these covariates;
nonlinearity is not an issue for financial aid, because this covariate is a dichotomous factor:

par(mfrow=c(2, 2))

res <- residuals(mod.allison.4, type="martingale")

12As an exercise, the reader may wish to identify these cases and, in particular, examine their ages.
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Figure 4: Index plots of dfbeta for the Cox regression of time to rearrest on fin, age, and prio.
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X <- as.matrix(Rossi[, c("age", "prio")]) # matrix of covariates

par(mfrow=c(2, 2))

for (j in 1:2) { # residual plots

plot(X[, j], res, xlab=c("age", "prio")[j], ylab="residuals")

abline(h=0, lty=2)

lines(lowess(X[, j], res, iter=0))

}

b <- coef(mod.allison.4)[c(2,3)] # regression coefficients

for (j in 1:2) { # component-plus-residual plots

plot(X[, j], b[j]*X[, j] + res, xlab=c("age", "prio")[j],

ylab="component+residual")

abline(lm(b[j]*X[, j] + res ~ X[, j]), lty=2)

lines(lowess(X[, j], b[j]*X[, j] + res, iter=0))

}

The resulting residual and component-plus-residual plots appear in Figure 5. As in the plots of
Schoenfeld residuals, smoothing these plots is also important to their interpretation; The smooths
in Figure 5 are produced by local linear regression using the lowess function; setting iter=0 selects
a non-robust smooth, which is generally advisable in plots that may be banded. Nonlinearity, it
appears, is slight here.

6 Complementary Reading and References

There are many texts on survival analysis: Cox and Oakes (1984) is a classic (if now slightly dated)
source, coauthored by the developer of the Cox model. As mentioned, the running example in this
appendix is adapted from Allison (2010), who presents a highly readable introduction to survival
analysis based on the SAS statistical package, but nevertheless of general interest. Allison (2014)
is a briefer treatment of the subject by the same author. Another widely read and wide-ranging
text on survival analysis is Hosmer et al. (2008). The book by Therneau and Grambsch (2000) is
also worthy of mention here; Therneau is the author of the survival package for R, and the text,
which focusses on relatively advanced topics, develops examples using both the survival package
and SAS. Extensive documentation for the survival package may be found in Therneau (1999);
although the survival package has continued to evolve since 1999, this technical report remains
a useful source of information about it, as do the several vignettes in the survival pacakge; see
vignette(package="survival").
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Figure 5: Martingale-residual plots (top) and component-plus-residual plots (bottom) for the co-
variates age and prio. The broken lines on the residual plots are at the vertical value 0, and on
the component-plus-residual plots are fit by linear least-squares; the solid lines are fit by local linear
regression (lowess).
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