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Abstract

Linear least-squares regression can be very sensitive to unusual data. In this appendix to
Fox and Weisberg (2011), we describe how to fit several alternative robust-regression estima-
tors, which attempt to down-weight or ignore unusual data: M -estimators; bounded-influence
estimators; MM -estimators; and quantile-regression estimators, including L1 regression.

All estimation methods rely on assumptions for their validity. We say that an estimator or sta-
tistical procedure is robust if it provides useful information even if some of the assumptions used to
justify the estimation method are not applicable. Most of this appendix concerns robust regression,
estimation methods typically for the linear regression model that are insensitive to outliers and
possibly high leverage points. Other types of robustness, for example to model misspecification,
are not discussed here. These methods were developed between the mid-1960s and the mid-1980s.
With the exception of the L1 methods described in Section 5, they are not widely used today.

1 Breakdown and Robustness

The finite-sample breakdown point of an estimator or procedure is the smallest fraction � of “bad”
data values such that if the [n�] bad values → ∞ then the estimator or procedure also becomes
infinite. For example, the sample mean of x1, . . . , xn can be written as an explicit function of one
of the observations in the sample as

x̄n =
1

n

n∑
i=1

xi

=
1

n

[
n−1∑
i=1

xi + xn

]

=
n− 1

n
x̄n−1 +

1

n
xn

and so if xn is large enough then x̄n can be made as large as desired regardless of the other n− 1
values.

Unlike the mean, the sample median, as an estimate of a population median, can tolerate up to
50% bad values. In general, the breakdown point cannot exceed 50%. (Reader: Why is that?)

2 M -Estimation

In linear regression, the breakdown of the ordinary least squares (OLS) estimator is analogous to
the breakdown of the sample mean: A few extreme observations can largely determine the value of
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the OLS estimator. In Fox and Weisberg (2011, Chap. 6), methods for detecting potentially influ-
ential points are presented, and these provide one approach to dealing with such points. Another
approach is to replace ordinary least squares with an estimation method that is less affected by
the outlying and influential points and can therefore produce useful results by accommodating the
non-conforming data.

The most common general method of robust regression is M -estimation, introduced by Hu-
ber (1964). This class of estimators can be regarded as a generalization of maximum-likelihood
estimation, hence the “M.”

We consider only the linear model

yi = �0 + �1xi1 + �2xi2 + ⋅ ⋅ ⋅+ �pxip + "i

= x′i� + "i

for the ith of n independent observations. We assume that the model itself is not at issue, so
E(y∣x) = x′i�, but the distribution of the errors may be heavy-tailed, producing occasional outliers.
Given an estimator b for �, the fitted model is

ŷi = b0 + b1xi1 + b2xi2 + ⋅ ⋅ ⋅+ bpxip + ei = x′ib

and the residuals are given by
ei = yi − ŷi = yi − x′ib

In M -estimation, the estimates b are determined by minimizing a particular objective function over
all b,

n∑
i=1

�(ei) =

n∑
i=1

�(yi − x′ib) (1)

where the function � gives the contribution of each residual to the objective function. A reasonable
� should have the following properties:

� always-non negative, �(e) ≥ 0;

� equal to 0 when its argument is 0, �(0) = 0;

� symmetric, �(e) = �(−e), although in some problems one might argue that symmetry is
undesirable; and

� monotone in ∣ei∣, �(ei) ≥ �(ei′) for ∣ei∣ > ∣ei′ ∣.

For example, the least-squares �-function �(ei) = e2i satisfies these requirements, as do many other
functions.

2.1 Computing M -Estimates

The minimum value of Equation 1 can be found by differentiating with respect to the argument b,
and setting the resulting partial derivatives to 0:

0 =
∂

∂b

n∑
i=1

�(yi − x′ib)

=

n∑
i=1

 (yi − x′ib)x′i
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where the influence curve  is defined to be the derivative of � with respect to its argument.
To facilitate computing, we would like to make this last equation similar to the estimating

equations for a familiar problem like weighted least squares. To this end, define the weight function
wi = w(ei) =  (ei)/ei. The estimating equations may then be written as

n∑
i=1

wi(yi − x′ib)x′i = 0

Solving these estimating equations is equivalent to a weighted least-squares problem, minimizing∑
w2
i e

2
i . The weights, however, depend upon the residuals, the residuals depend upon the estimated

coefficients, and the estimated coefficients depend upon the weights. An iterative solution (called
iteratively reweighted least-squares, IRLS ) is therefore required:

1. Select initial estimates b(0), such as the least-squares estimates.

2. At each iteration t, calculate residuals e
(t−1)
i and associated weights w

(t−1)
i = w

[
e
(t−1)
i

]
from

the previous iteration.

3. Solve for new weighted-least-squares estimates

b(t) =
[
X′W(t−1)X

]−1
X′W(t−1)y

where X is the model matrix, with x′i as its ith row, and W(t−1) = diag
{
w

(t−1)
i

}
is the

current weight matrix.

Steps 2 and 3 are repeated until the estimated coefficients converge.
The asymptotic covariance matrix of b is

V(b) =
E( 2)

[E( ′)]2
(X′X)−1

Using
∑

[ (ei)]
2 to estimate E( 2), and [

∑
 ′(ei)/n]2 to estimate [E( ′)]2 produces the estimated

asymptotic covariance matrix, V̂(b) (which is not reliable in small samples).

2.2 Objective Functions

Figure 1 compares the objective functions, and the corresponding  and weight functions for three
M -estimators: the familiar least-squares estimator; the Huber estimator; and the Tukey bisquare
(or biweight) estimator. The objective and weight functions for the three estimators are also given
in Table 1.

Both the least-squares and Huber objective functions increase without bound as the residual
e departs from 0, but the least-squares objective function increases more rapidly. In contrast, the
bisquare objective function levels eventually levels off (for ∣e∣ > k). Least-squares assigns equal
weight to each observation; the weights for the Huber estimator decline when ∣e∣ > k; and the
weights for the bisquare decline as soon as e departs from 0, and are 0 for ∣e∣ > k. The  function
of the bisquare estimator redescends to 0 for sufficiently large residuals.

The value k for the Huber and bisquare estimators is called a tuning constant ; smaller values
of k produce more resistance to outliers, but at the expense of lower efficiency when the errors are
normally distributed. The tuning constant is generally picked to give reasonably high efficiency in
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Figure 1: Objective (left),  (center), and weight (right) functions for the least-squares (top), Huber
(middle), and bisquare (bottom) estimators. The tuning constants for these graphs are k = 1.345
for the Huber estimator and k = 4.685 for the bisquare. (One way to think about this scaling is
that the standard deviation of the errors, �, is taken as 1.)
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Method Objective Function Weight Function
Least-Squares �LS(e) = e2 wLS(e) = 1

Huber �H(e) =

{
1
2e

2 for∣e∣ ≤ k
k∣e∣ − 1

2k
2 for∣e∣ > k

wH(e) =

{
1 for∣e∣ ≤ k

k/∣e∣ for∣e∣ > k

Bisquare �B(e) =

⎧⎨⎩
k2

6

{
1−

[
1−

( e
k

)2]3}
for∣e∣ ≤ k

k2/6 for∣e∣ > k

wB(e) =

⎧⎨⎩
[
1−

( e
k

)2]2
for∣e∣ ≤ k

0 for∣e∣ > k

Table 1: Objective functions and weight functions for least-squares, Huber, and bisquare estimators.

the normal case; in particular, k = 1.345� for the Huber and k = 4.685� for the bisquare (where �
is the standard deviation of the errors) produce 95-percent efficiency when the errors are normal,
and still offer protection against outliers.

In an application, we need an estimate of the standard deviation of the errors to use these
results. Usually a robust measure of spread is employed in preference to the standard deviation of
the residuals. For example, a common approach is to take �̂ = MAR/0.6745, where MAR is the
median absolute residual.

3 Bounded-Influence Regression

Under certain circumstances, M -estimators can be vulnerable to high-leverage observations. Very-
high-breakdown bounded-influence estimators for regression have been proposed and R functions
for them are presented here. Very-high-breakdown estimates should be avoided, however, unless
we have faith that the model we are fitting is correct, because these estimates do not allow for
diagnosis of model misspecification (Cook et al., 1992).

One bounded-influence estimator is least-trimmed squares (LTS ) regression. Order the squared
residuals from smallest to largest:

(e2)(1), (e
2)(2), . . . , (e

2)(n)

The LTS estimator chooses the regression coefficients b to minimize the sum of the smallest m of
the squared residuals,

LTS(b) =
m∑
i=1

(e2)(i)

where, typically, m = ⌊n/2⌋+ ⌊(k + 2)/2⌋, a little more than half of the observations, and the floor
brackets, ⌊ ⌋, denote rounding down to the next smallest integer.

While the LTS criterion is easily described, the mechanics of fitting the LTS estimator are
complicated (Rousseeuw and Leroy, 1987). Moreover, bounded-influence estimators can produce
unreasonable results in certain circumstances (Stefanski, 1991), and there is no simple formula for
coefficient standard errors.1

One application of bounded-influence estimators is to provide starting values for M -estimation.
This procedure, along with using the bounded-influence estimate of the error variance, produces
the so-called MM-estimator. The MM -estimator retains the high breakdown point of the bounded-
influence estimator and shares the relatively high efficiency under normality of the traditional

1Statistical inference for the LTS estimator can be performed by bootstrapping, however. See Section 4.3.7 in the
text and the Appendix on bootstrapping .
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M -estimator. MM -estimators are especially attractive when paired with redescending  -functions
such as the bisquare, which can be sensitive to starting values.

4 An Illustration: Duncan’s Occupational-Prestige Regression

Duncan’s occupational-prestige regression was introduced in Fox and Weisberg (2011, Chap. 1).
The least-squares regression of prestige on income and education produces the following results:

> library(car) # for data

> mod.ls <- lm(prestige ˜ income + education, data=Duncan)

> summary(mod.ls)

Call:

lm(formula = prestige ˜ income + education, data = Duncan)

Residuals:

Min 1Q Median 3Q Max

-29.54 -6.42 0.65 6.61 34.64

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.0647 4.2719 -1.42 0.16

income 0.5987 0.1197 5.00 1.1e-05

education 0.5458 0.0983 5.56 1.7e-06

Residual standard error: 13.4 on 42 degrees of freedom

Multiple R-squared: 0.828, Adjusted R-squared: 0.82

F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

Recall from the discussion of Duncan’s data in Fox and Weisberg (2011) that two observations,
ministers and railroad conductors, serve to decrease the income coefficient and to increase the
education coefficient, as we may verify by omitting these two observations from the regression:

> mod.ls.2 <- update(mod.ls, subset=-c(6,16))

> summary(mod.ls.2)

Call:

lm(formula = prestige ˜ income + education, data = Duncan, subset = -c(6,

16))

Residuals:

Min 1Q Median 3Q Max

-28.61 -5.90 1.94 5.62 21.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.4090 3.6526 -1.75 0.0870

income 0.8674 0.1220 7.11 1.3e-08

education 0.3322 0.0987 3.36 0.0017

6



Residual standard error: 11.4 on 40 degrees of freedom

Multiple R-squared: 0.876, Adjusted R-squared: 0.87

F-statistic: 141 on 2 and 40 DF, p-value: <2e-16

Alternatively, let us compute the Huber M -estimator for Duncan’s regression model, using the
rlm (robust linear model) function in the MASS package:

> library(MASS)

> mod.huber <- rlm(prestige ˜ income + education, data=Duncan)

> summary(mod.huber)

Call: rlm(formula = prestige ˜ income + education, data = Duncan)

Residuals:

Min 1Q Median 3Q Max

-30.12 -6.89 1.29 4.59 38.60

Coefficients:

Value Std. Error t value

(Intercept) -7.111 3.881 -1.832

income 0.701 0.109 6.452

education 0.485 0.089 5.438

Residual standard error: 9.89 on 42 degrees of freedom

The Huber regression coefficients are between those produced by the least-squares fit to the full
data set and the least-squares fit eliminating the occupations minister and conductor.

It is instructive to extract and plot (in Figure 2) the final weights used in the robust fit. The
showLabels function from car is employed to label all observations with weights less than 0.8:

> plot(mod.huber$w, ylab="Huber Weight")

> smallweights <- which(mod.huber$w < 0.8)

> showLabels(1:45, mod.huber$w, rownames(Duncan), id.method=smallweights, cex.=.6)

[1] "minister" "reporter" "conductor" "contractor"

[5] "factory.owner" "mail.carrier" "insurance.agent" "store.clerk"

[9] "machinist"

Ministers and conductors are among the observations that receive the smallest weight.
The function rlm can also fit the bisquare estimator. As we explained, starting values for the

IRLS procedure are potentially more critical for the bisquare estimator; specifying the argument
method="MM" to rlm requests bisquare estimates with start values determined by a preliminary
bounded-influence regression:

> mod.bisq <- rlm(prestige ˜ income + education, data=Duncan, method="MM")

> summary(mod.bisq)

Call: rlm(formula = prestige ˜ income + education, data = Duncan, method = "MM")

Residuals:

Min 1Q Median 3Q Max
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Figure 2: Weights from the robust Huber estimator for the regression of prestige on income and
education.

-29.87 -6.63 1.44 4.47 42.40

Coefficients:

Value Std. Error t value

(Intercept) -7.389 3.908 -1.891

income 0.783 0.109 7.149

education 0.423 0.090 4.710

Residual standard error: 9.79 on 42 degrees of freedom

Compared to the Huber estimates, the bisquare estimate of the income coefficient is larger, and
the estimate of the education coefficient is smaller. Figure 3 shows a graph of the weights from
the bisquare fit, identifying the observations with the smallest weights:

> plot(mod.bisq$w, ylab="Bisquare Weight")

> showLabels(1:45, mod.bisq$w, rownames(Duncan),

+ id.method= which(mod.bisq$w < 0.8), cex.=0.6)

[1] "minister" "reporter" "conductor"

[4] "contractor" "factory.owner" "mail.carrier"

[7] "insurance.agent" "store.clerk" "machinist"

[10] "streetcar.motorman"

Finally, the ltsreg function in the lqs package is used to fit Duncan’s model by LTS regression:2

> (mod.lts <- ltsreg(prestige ˜ income + education, data=Duncan))

2LTS regression is also the default method for the lqs function, which additionally can fit other bounded-influence
estimators.
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Figure 3: Weights from the robust bisquare estimator for the regression of prestige on income

and education.

Call:

lqs.formula(formula = prestige ˜ income + education, data = Duncan,

method = "lts")

Coefficients:

(Intercept) income education

-5.503 0.768 0.432

Scale estimates 7.77 7.63

In this case, the results are similar to those produced by the M -estimators. The print method for
bounded-influence regression gives the regression coefficients and two estimates of the variation or
scale of the errors. There is no summary method for this class of models.

5 L1 and Quantile Regression

This section follows Koenker (2005) and the vignette for quantile regression in the quantreg
package in R. We start by assuming a model like this:

yi = x′i� + "i (2)

where the "i are random errors. We estimate � by solving the minimization problem

�̃ = arg min
1

n

n∑
i=1

∣∣yi − x′i�
∣∣ =

1

n

n∑
i=1

�.5(yi − x′i�) (3)

If the "i are independent and identically distributed from a double exponential distribution, then
�̃ is the maximum likelihood estimate for �. In general L1 regression estimates the median y at
x′i�, so one can think of this as median regression.
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We begin with a simple simulated example with N1 “good” observations and N2 “bad” ones:

> set.seed(10131986) # for reproducibility

> library(quantreg)

> l1.data <- function(n1=100, n2=20){

+ data <- mvrnorm(n=n1,mu=c(0, 0),

+ Sigma=matrix(c(1, .9, .9, 1), ncol=2))

+ # generate 20 'bad' observations

+ data <- rbind(data, mvrnorm(n=n2,

+ mu=c(1.5, -1.5), Sigma=.2*diag(c(1, 1))))

+ data <- data.frame(data)

+ names(data) <- c("X", "Y")

+ ind <- c(rep(1, n1),rep(2, n2))

+ plot(Y ˜ X, data, pch=c("x", "o")[ind],

+ col=c("black", "red")[ind],

+ main=substitute(list(N[1] == n1, N[2] == n2), list(n1=n1, n2=n2)))

+ summary(r1 <-rq(Y ˜ X, data=data, tau=0.5))

+ abline(r1, lwd=2)

+ abline(lm(Y ˜ X, data), lty=2, lwd=2, col="red")

+ abline(lm(Y ˜ X, data, subset=1:n1), lty=3, lwd=2, col="blue")

+ legend("topleft", c("L1","OLS","OLS on good"),

+ inset=0.02, lty=1:3, lwd=2, col=c("black", "red", "blue"),

+ cex=.9)}

> par(mfrow=c(2, 2))

> l1.data(100, 20)

> l1.data(100, 30)

> l1.data(100, 75)

> l1.data(100, 100)

In Figure 4, all four panels have N1 = 100 observations sampled from a bivariate normal distribution
with means (0, 0)′, variances (1, 1)′, and correlation 0.9. In addition, N2 observations are sampled
from a bivariate normal distribution with means (1.5,−1.5) and covariance matrix

√
2I2. The value

of N2 varies from panel to panel. In each panel, three regression lines are shown: OLS fit to the
N1 good data points; OLS fit to all the data; and median regression fit to all the data. If the goal
is to match, more or less, the OLS regression fit to the good data, then the median regression does
a respectable jobs for N2 ≤ 30, but it does no better than OLS on all the data for larger N2. Of
course in these latter cases the distinction between “good” and “bad” data is hard to justify.

5.1 Comparing L1 and L2 (OLS) Regression

L1 regression minimizes the sum of the absolute errors while L2, another name for ordinary least
squares, minimizes squared errors. Consequently, L1 gives much less weight to large deviations.
The �-functions for L1 and L2 are shown in Figure 5:

> curve(abs(x),-2, 2, lwd=2, ylab=expression(rho(x)))

> curve(xˆ2, -3, 3, lty=2, lwd=2, add=TRUE, col="red")

> abline(h=0, lty=3)

> abline(v=0, lty=3)

> legend("bottomleft", inset=.05, legend=c("L1", "L2"), lty=1:2,

+ cex=0.75, col=c("black", "red"))
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Figure 4: Simulated data with an increasing number of “bad” or “outlying” observations. Three
lines are shown in each panel: the L1 regression (solid black line); OLS fit to all of the data (broken
red line); OLS fit to the “good” data points (dotted blue line).
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Figure 5: �-functions for L1 and L2 regressions

5.2 L1 Facts

1. The L1 estimator is the MLE if the errors are independent with a double-exponential distri-
bution.

2. In Equation 2 (page 9) if x consists only of the constant regressor (1), then the L1 estimator
is the median.

3. Computations are not nearly as easy as for least squares, because a linear programming
solution is required for L1 regression.

4. If the n× p model matrix X = (x′1, . . . ,x
′
n)′ is of full column rank p+ 1, and if h is a set that

indexes exactly p + 1 of the rows of X, then there is always an h such that the L1 estimate
�̃ fits these p+ 1 points exactly, so �̃ = (X′hXh)−1X′hyh = X−1h yh. Of course the number of
potential subsets is large, so this may not help much in the computations.

5. L1 is equivariant, meaning that replacing y by a + by and X by A + B−1X (where a, b, A,
and B are constants) will leave the solution essentially unchanged.

6. The breakdown point of the L1 estimate can be shown to be 1− 1/
√

2 ≈ 0.29, so about 29%
“bad” data can be tolerated.

7. In general L1 regression estimates the median of y∣x, not the conditional mean.

8. Suppose we have Equation 2 (page 9) with the errors independent and identically distributed
from a distribution F with density f . The population median is �� = F−1(�) with � = 0.5,
and the sample median is �̂.5 = F̂−1(�). We assume a standardized version of f so f(u) =
(1/�)f0(u/�). Write Qn = n−1

∑
xix
′
i, and suppose that in large samples Qn → Q0, a fixed

matrix. We will then have √
n(�̃ − �) ∼ N(0, !Q−10 )

12



where ! = �2�(1− �)/{f0[F−10 (�)]}2 and � = 0.50. For example, if f is the standard normal
density, f [F−10 (�)] = 1/

√
2� = 0.399, and

√
! = 0.5�/0.399 = 1.26�, so in the normal case

the standard deviations of the L1 estimators are 26% larger than the standard deviations of
the OLS estimators.

9. If f were known, asymptotic Wald tests and confidence intervals could be based on percentiles
of the normal distribution. In practice, f [F−1(�)] must be estimated. One standard method
due to Siddiqui is to estimate

ˆf [F−1(�)] =
[
F̂−1(� + ℎ)− F̂−1(� − ℎ)

]
/2ℎ

for some bandwidth parameter ℎ. This approach is closely related to density estimation, and
so the value of ℎ used in practice is selected by a method appropriate for density estimation.

Alternatively, f [F−1(�)] can be estimated using a bootstrap procedure.

10. For non-independent and identically distributed errors, suppose that �i(�) is the � -quantile
for the distribution of the ith error. One can show that

√
n(�̃ − �) ∼ N

[
0, �(1− �)H−1Q0H

−1]
where the matrix H is given by

H = lim
n→∞

1

n

n∑
i=1

xix
′
ifi�i(�)

and thus a sandwich-type estimator is used for estimating the variance of �̃. The rq function in
the quantreg package uses a sandwich formula by default for computing coefficient standard
errors.

6 Quantile regression

6.1 Sample and Population Quantiles

For a sample x1, . . . , xn, for any 0 < � < 1 the �th sample quantile is the smallest value that
exceeds � × 100% of the data. In a population with distribution F , we define the �th population
quantile to be the solution to

�� (x) = F−1(�) = inf{x : F (x) ≥ �}

L1 is a special case of quantile regression in which we minimize the � = .50-quantile, but a similar
calculation can be performed for any 0 < � < 1, where the objective function �� (u) is called in this
instance a check function,

�� (u) = u× [� − I(u < 0)] (4)

where I is the indicator function (more on check functions later). Figure 6 shows the check function
in Equation 4 for � ∈ {.25, .5, .9}:

> rho <- function(u) {

+ u * (tau - ifelse(u < 0,1,0) )

+ }

13
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Figure 6: Check function for three values of � for quantile regression. For � = 0.5, positive and
negative errors are treated symmetrically, but for the other values of � , positive and negative errors
are treated asymmetrically.

> tau <- .25; curve(rho, -2, 2, lty=1, lwd=2, ylab=expression(rho[tau](x)))

> tau <- .50; curve(rho, -2, 2, lty=2, col="blue", add=TRUE, lwd=2)

> tau <- .90; curve(rho, -2, 2, lty=3, col="red", add=TRUE, lwd=2)

> abline(v=0, h=0, lty=5, col="gray")

> legend(-1, 1.5, c(".25", ".5", ".9"), lty=1:3, lwd=2, cex=0.75,

+ col=c("black" ,"blue" ,"red"), title=expression("values of"˜tau))

Quantile regression is just like L1 regression with �� replacing �.5 in Equation 3 (page 9), and with
� replacing 0.5 in the asymptotics.

6.2 Example: Salary Data

This example examines salary as a function of job difficulty for job classes in a large governmental
unit. Points are marked according to whether or not the fraction of female employees in the class
exceeds 80%. The data are shown in Figure 7. Because the dependence of the response on the
predictor is apparently curved, we model the response with a 5-df B-spline, using the model formula
MaxSalary ˜ bs(Score, 5). We will estimate the median regression, as well as the 0.10 and 0.90
quantile regressions:

> library(alr3) # for data

> library(quantreg)

> fdom <- with(salarygov, NW/NE > .8)

> taus <- c(.1, .5, .9)

> ltys <- c(2, 1, 2)

> cols <- c("blue", "red", "blue")

> x <- 100:1000

14



> plot(MaxSalary ˜ Score, data=salarygov,

+ xlim=c(100, 1000), ylim=c(1000, 10000),

+ pch=c(2, 16)[fdom + 1], col=c("black", "green")[fdom + 1])

> mods <- rq(MaxSalary ˜ bs(Score, 5), tau=c(.1, .5, .9),

+ data=salarygov[!fdom, ])

> mods

Call:

rq(formula = MaxSalary ˜ bs(Score, 5), tau = c(0.1, 0.5, 0.9),

data = salarygov[!fdom, ])

Coefficients:

tau= 0.1 tau= 0.5 tau= 0.9

(Intercept) 1207.0 1507.3 1466.5

bs(Score, 5)1 -100.9 -151.9 437.4

bs(Score, 5)2 779.9 974.1 1300.7

bs(Score, 5)3 2010.6 2255.9 3176.0

bs(Score, 5)4 3724.4 3822.2 5010.0

bs(Score, 5)5 5122.0 6147.1 5733.8

Degrees of freedom: 357 total; 351 residual

> predictions <- predict(mods, data.frame(Score=x))

> for( j in 1:3) lines(x, predictions[, j], col=cols[j], lty=ltys[j], lwd=2)

> legend("topleft", legend=taus, title="Quantile", lty=ltys, lwd=2,

+ col=cols, inset=0.01)

> legend("bottomright", legend=c("Non-Female-Dominated","Female-Dominated"),

+ pch=c(2, 16), inset=0.01, col=c("black", "green"))

We begin by defining an indicator variable for the emale-dominated job classes, and a vector for the
�s . We will graph the non-female-dominated classes in black and the female-dominated classes in
green. The quantile regression is fit using the rq function in the quantreg package. Its arguments
are similar to those for lm except for a new argument for setting tau; the default is tau=0.5 for
L1 regression, and here we specify three values of � . The fitted coefficients for the B-splines are
then displayed, and although these are not easily interpretable, the important point is that they
are different for each value of � . The predict function returns a matrix with three columns, one
for each � , and we use these values to add fitted regression lines to the graph. We fit the model to
the non-female-dominated occupations only, as is common is gender-discrimination studies.

The quantile regressions are of interest here to describe the variation in the relationship between
salary and score in the non-female-dominated job classes. Most of the female-dominated classes
fall below the median line and many below the 0.1-quantile. For extreme values of Score the more
extreme quantiles are very poorly estimated, which accounts for the crossing of the median and the
0.9 estimated quantiles for large values of Score.

6.3 Duncan’s Data

Quantile regression can also be used for multiple regression. For example, to compute the L1
regression for Duncan’s occupational-prestige data:
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Figure 7: Quantile regressions fit to non-female-dominated job classes.

Method b0 b1 (income) b2 (education)

OLS −6.0647 0.5987 0.5458
OLS removing obs. 6 & 16 −6.4090 0.8674 0.3322
Huber M -estimator −7.1107 0.7014 0.4854
bisquare MM -estimator −7.3886 0.7825 0.4233
LTS estimator −7.0145 0.8045 0.4318
L1 estimator −6.4083 0.7477 0.4587

Table 2: Various estimators of Duncan’s occupational-prestige regression.

> mod.quant <- rq(prestige ˜ income + education, data=Duncan)

> summary(mod.quant)

Call: rq(formula = prestige ˜ income + education, data = Duncan)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) -6.4083 -12.4955 -3.6003

income 0.7477 0.4719 0.9117

education 0.4587 0.2195 0.6610

The summary method for rq objects reports 95-percent confidence intervals for the regression coeffi-
cients; it is also possible to obtain coefficient standard errors (see ?summary.rq). The L1 estimates
here are very similar to the M -estimates based on Huber’s weight function. Table 2 summarizes
the various estimators that we applied Duncan’s regression.
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7 Complementary Reading and References

Robust regression is described in Fox (2008, Chap. 19). Koenker (2005) provides an extensive
treatment of quantile regression. A recent mathematical treatment of robust regression is given by
Huber and Ronchetti (2009). Andersen (2007) provides an introduction to the topic.
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