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Abstract

Generalized least-squares (GLS ) regression extends ordinary least-squares (OLS) estimation
of the normal linear model by providing for possibly unequal error variances and for correlations
between different errors. A common application of GLS estimation is to time-series regression,
in which it is generally implausible to assume that errors are independent. This appendix to
Fox and Weisberg (2011) briefly reviews GLS estimation and demonstrates its application to
time-series data using the gls function in the nlme package, which is part of the standard R
distribution.

1 Generalized Least Squares

In the standard linear model (for example, in Chapter 4 of the text),

y = X� + "

where y is the n × 1 response vector; X is an n × k + 1 model matrix; � is a k + 1 × 1 vector of
regression coefficients to estimate; and " is an n×1 vector of errors. Assuming that " ∼ Nn(0, �2In)
leads to the familiar ordinary-least-squares (OLS ) estimator of �,

bOLS = (X′X)−1X′y

with covariance matrix
Var(bOLS) = �2(X′X)−1

Let us, however, assume more generally that " ∼ Nn(0,Σ), where the error covariance matrix
Σ is symmetric and positive-definite. Different diagonal entries in Σ correspond to non-constant
error variances, while nonzero off-diagonal entries correspond to correlated errors.

Suppose, for the time-being, that Σ is known. Then, the log-likelihood for the model is

loge L(�) = −n
2

loge 2� − 1
2 loge(det Σ)− 1

2(y −X�)′Σ−1(y −X�)

which is maximimized by the generalized-least-squares (GLS ) estimator of �,

bGLS = (X′Σ−1X)−1X′Σ−1y

with covariance matrix
Var(bGLS) = (X′Σ−1X)−1
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For example, when Σ is a diagonal matrix of (generally) unequal error variances, then bGLS is just
the weighted-least-squares (WLS ) estimator.

In a real application, of course, the error covariance matrix Σ is not known, and must be
estimated from the data along with the regression coefficients �. There are, however, vastly too
many elements in Σ — n(n + 1)/2 distinct elements — to estimate the model without further
restrictions. With a suitably restrictive parametrization of Σ , the model can be estimated by
maximum likelihood or another appropriate method.

2 Serially Correlated Errors

One common context in which the errors from a regression model are unlikely to be independent is
in time-series data, where the observations represent different moments or intervals of time, usually
equally spaced. We will assume that the process generating the regression errors is stationary : That
is, all of the errors have the same expectation (already assumed to be 0) and the same variance
(�2), and the covariance of two errors depends only upon their separation s in time:1

C("t, "t+s) = C("t, "t−s) = �2�s

where �s is the error autocorrelation at lag s.
In this situation, the error covariance matrix has the following structure:

Σ = �2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 �1 �2 ⋅ ⋅ ⋅ �n−1
�1 1 �1 ⋅ ⋅ ⋅ �n−2
�2 �1 1 ⋅ ⋅ ⋅ �n−3
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

�n−1 �n−2 �n−3 ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= �2P

If we knew the values of �2 and the �s, then we could apply this result to find the GLS estimator
of � in a time-series regression, but, of course, these are generally unknown parameters. Moreover,
while they are many fewer than the number of elements in the unrestricted error covariance matrix
Σ, the large number (n − 1) of different �s makes their estimation impossible without specifying
additional structure for the autocorrelated errors.

There are several standard models for stationary time-series; the most common for autocorre-
lated regression errors is the first-order auto-regressive process, AR(1):

"t = �"t−1 + �t

where the random shocks �t are assumed to be Gaussian white noise, NID(0, �2�). Under this model,
�1 = �, �s = �s, and �2 = �2�/(1−�2). Because, as a correlation, ∣�∣ < 1, the error autocorrelations
�s decay exponentially towards 0 as s increases.2

Higher-order autoregressive models are a direct generalization of the first-order model; for ex-
ample, the second-order autoregressive model, denoted AR(2), is

"t = �1"t−1 + �2"t−2 + �t

1Adjacent observations are taken by convention to be separated by 1 unit of time—e.g., 1 year in annual time-series
data.

2For the AR(1) process to be stationary, ∣�∣ cannot be equal to 1.
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In contrast, in the first-order moving-average process, MA(1), the current error depends upon
the random shock from the current and previous periods (rather than upon the previous regression
error),

"t = �t +  �t−1

and higher-order MA(q) processes are similarly defined. Finally, AR and MA terms are combined
in ARMA(p, q) processes; for example, ARMA(1, 1) errors follow the process

"t = �"t−1 + �t +  �t−1

Examining the residual autocorrelations from a preliminary OLS regression can suggest a rea-
sonable form for the error-generating process.3 The lag-s residual autocorrelation is

rs =

∑n
t=s+1 etet−s∑n

t=1 e
2
t

If the residuals were independently distributed (which they are not), the standard error of each
rs would be approximately 1/

√
n, a quantity that can be used as a rough guide to the statistical

significance of the residual autocorrelations. A more accurate approach is to calculate the Dubin-
Watson statistics,

Ds =

∑n
t=s+1(et − et−s)2∑n

t=1 e
2
t

which have a known, if complex, sampling distribution that depends upon the model matrix X.
When the sample size is large, Ds ≈ 2(1−rs), and so Durbin-Watson statistics near 2 are indicative
of small residual autocorrelation, those below 2 of positive autocorrelation, and those above 2 of
negative autocorrelation.

3 Using The gls Function in R

The gls function in the nlme package (Pinheiro et al., 2010), which is part of the standard
R distribution, fits regression models with a variety of correlated-error and non-constant error-
variance structures.4 To illustrate the use of gls, let us examine time-series data on women’s crime
rates in Canada, analyzed by Fox and Hartnagel (1979). The data are in the data frame Hartnagel
in the car package (Fox and Weisberg, 2011):

> library(car)

. . .

> Hartnagel

3In identifying an ARMA process, it helps to look as well at the partial autocorrelations of the residuals. For
example, an AR(1) process has an exponentially decaying autocorrelation function, and a partial autocorrelation
function with a single nonzero spike at lag 1. Conversely, an MA(1) process has an exponentially decaying partial
autocorrelation function, and an autocorrelation function with a single nonzero spike at lag 1. Of course, these neat
theoretical patterns are subject to sampling error.

4The nlme package also has functions for fitting linear and nonlinear mixed models, as described in the Appendix
on mixed-effects models.
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year tfr partic degrees fconvict ftheft mconvict mtheft

1 1931 3200 234 12.4 77.1 NA 778.7 NA

2 1932 3084 234 12.9 92.9 NA 745.7 NA

3 1933 2864 235 13.9 98.3 NA 768.3 NA

4 1934 2803 237 13.6 88.1 NA 733.6 NA

5 1935 2755 238 13.2 79.4 20.4 765.7 247.1

6 1936 2696 240 13.2 91.0 22.1 816.5 254.9

. . .

37 1967 2586 339 80.4 115.2 70.6 781.1 272.0

38 1968 2441 338 90.4 122.9 73.0 849.7 274.7

The variables in the data set are as follows:

� year, 1931–1968.

� tfr, the total fertility rate, births per 1000 women.

� partic, women’s labor-force participation rate, per 1000.

� degrees, women’s post-secondary degree rate, per 10,000.

� fconvict, women’s indictable-offense conviction rate, per 100,000.

� ftheft, women’s theft conviction rate, per 100,000.

� mconvict, men’s indictable-offense conviction rate, per 100,000.

� mtheft, men’s theft conviction rate, per 100,000.

We will estimate the regression of fconvict on tfr, partic, degrees, and mconvict. The
rationale for including the last predictor is to control for omitted variables that affect the crime
rate in general. Let us begin by examining the time series for the women’s conviction rate (Figure 1):

> plot(fconvict ˜ year, type="o", pch=16, data=Hartnagel,

+ ylab="Convictions per 100,000 Women")

Including the argument type="o" to plot overplots points and lines, as is traditional for a time-
series graph, and pch=16 specifies filled dots as the plotting characters.5 We can see that the
women’s conviction rate fluctuated substantially but gradually during this historical period, with
no apparent overall trend.

A preliminary OLS regression produces the following fit to the data:

> mod.ols <- lm(fconvict ˜ tfr + partic + degrees + mconvict, data=Hartnagel)

> summary(mod.ols)

Call:

lm(formula = fconvict ˜ tfr + partic + degrees + mconvict, data = Hartnagel)

5For more information on drawing graphs in R, see Chapter 7 of the text. There is a ts.plot function in the stats
package in R for graphing time-series data. Though we will not bother to do so, it is also possible to define special
time-series data objects in R. For more information, consult ?ts.
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Figure 1: Time series of Canadian women’s indictable-offense conviction rate, 1931–1968.

Residuals:

Min 1Q Median 3Q Max

-42.96 -9.20 -3.57 6.15 48.38

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 127.64000 59.95704 2.13 0.041

tfr -0.04657 0.00803 -5.80 1.8e-06

partic 0.25342 0.11513 2.20 0.035

degrees -0.21205 0.21145 -1.00 0.323

mconvict 0.05910 0.04515 1.31 0.200

Residual standard error: 19.2 on 33 degrees of freedom

Multiple R-squared: 0.695, Adjusted R-squared: 0.658

F-statistic: 18.8 on 4 and 33 DF, p-value: 3.91e-08

The women’s crime rate, therefore, appears to decline with fertility and increase with labor-force
participation; the other two predictors have nonsignificant coefficients. A graph of the residuals from
the OLS regression (Figure 2), however, suggests that they may be substantially autocorrelated:6

> plot(Hartnagel$year, residuals(mod.ols), type="o", pch=16,

+ xlab="Year", ylab="OLS Residuals")

> abline(h=0, lty=2)

The acf function in the R stats package computes and plots the autocorrelation and partial-
autocorrelation functions of a time series, here for the OLS residuals (Figure 3):

> acf(residuals(mod.ols))

> acf(residuals(mod.ols), type="partial")
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Figure 2: Residuals from the OLS regression of women’s conviction rate on several predictors.
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Figure 3: Autocorrelation and partial-autocorrelation functions for the residuals from the OLS
regression of women’s conviction rate on several predictors.
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The broken horizontal lines on the plots correspond to 95-percent confidence limits. The general
pattern of the autocorrelation and partial autocorrelation functions — sinusoidal decay in the
former; two spikes, one positive, the other negative, in the latter — is suggestive of an AR(2)
process with �1 > 0 and �2 < 0.

We follow up by computing Durbin-Watson statistics for the OLS regression, using the durbin-
WatsonTest function in the car package. By default, this function computes bootstrapped p -values
for the Durbin-Watson statistics:7

> durbinWatsonTest(mod.ols, max.lag=5)

lag Autocorrelation D-W Statistic p-value

1 0.6883 0.6169 0.000

2 0.1923 1.5994 0.164

3 -0.1686 2.3187 0.328

4 -0.3653 2.6991 0.000

5 -0.3673 2.6521 0.004

Alternative hypothesis: rho[lag] != 0

Three of the first five Durbin-Watson statistics are statistically significant, including the first. As
an alternative, the dwtest function in the lmtest package (Zeileis and Hothorn, 2002) computes
the p -value for the first-order Durbin-Watson statistic analytically:

> library(lmtest)

> dwtest(mod.ols, alternative="two.sided")

Durbin-Watson test

data: mod.ols

DW = 0.6169, p-value = 1.392e-08

alternative hypothesis: true autocorelation is not 0

Many of the arguments for the gls function are the same as for lm — in particular, gls takes
model, data, subset, and na.action arguments.

� In gls, na.action defaults to na.fail: Missing data in a time-series in any event require
special consideration.

� The weights argument to gls can be used to specify a model for the error variance,

� The correlation argument (as we will illustrate presently) can be used to specify a model
for error autocorrelation.

� The method argument selects the method of estimation — method="ML" for maximum-
likelihood estimation.8

6There also seems to be something unusual going on during World War II that is not accounted for by the
predictors, a subject that we will not pursue here.

7See Section 4.3.7 of the text and the Appendix on bootstrapping.
8The default method for glm is "REML" for REstricted Maximum-Likelihood, which may be thought of as correcting

for degrees of freedom. In the current illustration, REML estimation produces very different results from ML. (Try
it!) To see the full range of arguments to glm, consult the on-line help.
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For the Canadian women’s crime data:

> library(nlme)

> mod.gls <- gls(fconvict ˜ tfr + partic + degrees + mconvict,

+ data=Hartnagel, correlation=corARMA(p=2), method="ML")

> summary(mod.gls)

Generalized least squares fit by maximum likelihood

Model: fconvict ˜ tfr + partic + degrees + mconvict

Data: Hartnagel

AIC BIC logLik

305.4 318.5 -144.7

Correlation Structure: ARMA(2,0)

Formula: ˜1

Parameter estimate(s):

Phi1 Phi2

1.0683 -0.5507

Coefficients:

Value Std.Error t-value p-value

(Intercept) 83.34 59.47 1.401 0.1704

tfr -0.04 0.01 -4.309 0.0001

partic 0.29 0.11 2.568 0.0150

degrees -0.21 0.21 -1.016 0.3171

mconvict 0.08 0.04 2.162 0.0380

Correlation:

(Intr) tfr partic degres

tfr -0.773

partic -0.570 0.176

degrees 0.093 0.033 -0.476

mconvict -0.689 0.365 0.047 0.082

Standardized residuals:

Min Q1 Med Q3 Max

-2.4992 -0.3717 -0.1495 0.3372 2.9095

Residual standard error: 17.70

Degrees of freedom: 38 total; 33 residual

Specifying the correlation structure as correlation=corARMA(p=2) fits an AR(2) process for the
errors; that is, the moving-average component is implicitly of order q=0, and hence is absent. In
this instance, the ML estimates of the regression parameters under the AR(2) error-correlation
model are not terribly different from the OLS estimates (although the coefficient for mconvict is
now statistically significant). The ML estimates of the error-autoregressive parameters are sizable,
�̂1 = 1.068 and �̂2 = −0.551.

We can employ likelihood-ratio tests to check whether the parameters of the AR(2) process for
the errors are necessary, and whether a second-order autoregressive model is sufficient. We proceed
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by updating the original gls model, respecifying the time-series process for the errors; we then
compare nested models using the generic anova function, which has a method for gls objects:

> mod.gls.3 <- update(mod.gls, correlation=corARMA(p=3))

> mod.gls.1 <- update(mod.gls, correlation=corARMA(p=1))

> mod.gls.0 <- update(mod.gls, correlation=NULL)

> anova(mod.gls, mod.gls.1)

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls 1 8 305.4 318.5 -144.7

mod.gls.1 2 7 312.4 323.9 -149.2 1 vs 2 9.009 0.0027

> anova(mod.gls, mod.gls.0)

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls 1 8 305.4 318.5 -144.7

mod.gls.0 2 6 339.0 348.8 -163.5 1 vs 2 37.59 <.0001

> anova(mod.gls.3, mod.gls)

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls.3 1 9 307.4 322.1 -144.7

mod.gls 2 8 305.4 318.5 -144.7 1 vs 2 0.01847 0.8919

An AR(3) specification would be unusually complicated, but in any event the tests support the
AR(2) specification.

4 Complementary Reading and References

Time-series regression and GLS estimation are covered in Fox (2008, chap. 16). GLS estimation
is a standard topic in econometrics texts. There are substantial treatments in Judge et al. (1985)
and in Greene (2003), for example. Likewise, ARMA models are a standard topic in the time-series
literature; see, for example, Chatfield (1989).
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