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Abstract

In traditional parametric regression models, the functional form of the model is specified
before the model is fit to data, and the object is to estimate the parameters of the model. In
nonparametric regression, in contrast, the object is to estimate the regression function directly
without specifying its form explicitly. In this appendix to Fox and Weisberg (2019), we describe
how to fit several kinds of nonparametric-regression models in R, including scatterplot smoothers,
where there is a single predictor; models for multiple regression; additive regression models; and
generalized nonparametric-regression models that are analogs to generalized linear models.

1 Nonparametric Regression Models

The traditional nonlinear regression model that is described in the on-line appendix to the R Com-
panion on nonlinear regression fits the model

y = m(x,θ) + ε

where θ is a vector of parameters to be estimated, and x is a vector of predictors;1 the errors ε
are assumed to be normally and independently distributed with mean 0 and constant variance σ2.
The function m(x,θ), relating the average value of the response y to the predictors, is specified in
advance, as it is in a linear regression model.

The general nonparametric regression model is written in a similar manner, but the function m
is left unspecified:

y = m(x) + ε

= m(x1, x2, . . . , xp) + ε

for the p predictors x = (x1, x2, . . . , xp)′. Moreover, the object of nonparametric regression is to
estimate the regression function m(x) directly, rather than to estimate parameters. Most methods
of nonparametric regression implicitly assume that m is a smooth, continuous function.2 As in
nonlinear regression, it is standard to assume that ε ∼ NID(0, σ2).

An important special case of the general model is nonparametric simple regression, where there
is only one predictor:

y = m(x) + ε

1If you’re unfamiliar with vector notation, simply think of x is the collection of predictors and θ as the collection
of regression parameters.

2An exception to the implicit assumption of smoothness is wavelet regression, not discussed in this appendix, which
is implemented in R, e.g., in the wavethresh package (Nason, 2016); see Nason and Silverman (1994, 2000); Nason
(2008).
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Nonparametric simple regression is often called “scatterplot smoothing” because an important ap-
plication is to tracing a smooth curve through a scatterplot of y against x. We frequently use
nonparametric regression in this manner in the body of the R Companion, and discuss it in Sec-
tions 3.6 and 9.2 of the text.

Because it is difficult to fit the general nonparametric regression model when there are many
predictors, and because it is difficult to display the fitted model when there are more than two
or three predictors, more restrictive models have been developed. One such model is the additive
regression model,

y = β0 +m1(x1) +m2(x2) + · · ·+mp(xp) + ε

where the partial-regression functions mj(xj) are assumed to be smooth, and are to be estimated
from the data. This model is much more restrictive than the general nonparametric regression model,
but less restrictive than the linear regression model, which assumes that all of the partial-regression
functions are linear.

Variations on the additive regression model include semiparametric models, in which some of the
predictors enter linearly, for example,

y = β0 + β1x1 +m2(x2) + · · ·+mp(xp) + ε

This is particularly useful when some of the predictors are factors, represented in the model as
dummy regressors or other contrasts. A more general version allows for selected interactions

”
for

example
y = β0 +m12(x1, x2) +m3(x3) + · · ·+mp(xp) + ε

All of these models extend to generalized nonparametric regression, much as linear models extend
to generalized linear models as discussed in Chapter 6 of the R Companion. The random and link
components are as in generalized linear models, but the linear predictor of the GLM

η = β0 + β1x1 + β2x2 + · · ·+ βpxp

is replaced, for example, by an unspecified smooth function of the predictors

η = m(x1, x2, . . . , xp)

for the most general case, or by a sum of smooth partial-regression functions

η = β0 +m1(x1) +m2(x2) + · · ·+mp(xp)

in the generalized additive model.

2 Estimation

There are several approaches to estimating nonparametric regression models, of which we will de-
scribe two: local polynomial regression and smoothing splines. With respect to implementation of
these methods in R, there is an embarrassment of riches:

� Local polynomial regression is performed by the standard R functions lowess() (locally
weighted scatterplot smoother, for the simple-regression case) and loess() (local regression,
more generally).

� Simple-regression smoothing-spline estimation is performed by the standard R function
smooth.spline().
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� Generalized nonparametric regression by local likelihood estimation, of which local regression
is a special case for models with normal errors, is implemented in the locfit (local fitting)
package (Loader, 1999), which also performs density estimation.

� Generalized additive models may be fit with Hastie and Tibshirani’s (1990) gam() function
(in the gam package), which uses spline or local-regression smoothers. The gam() function in
Wood’s (2000, 2001, 2006) mgcv package, which is part of the standard R distribution, also
fits this class of models using spline smoothers, and features automatic selection of smoothing
parameters. (The name of the package comes from the method used to pick the smoothing
parameters: multiple generalized cross-validation.)

� There are several other R packages for nonparametric regression, including Bowman and Az-
zalini’s (1997) sm (smoothing) package, which performs local-regression and local-likelihood
estimation, and which also includes facilities for nonparametric density estimation; and Gu’s
(2000) gss (general smoothing splines) package, which fits various smoothing-spline regression
and generalized regression models. This is not an exhaustive list!

2.1 Local Polynomial Regression

2.1.1 Simple Regression

We are looking to fit the model
y = m(x) + ε

Focus first on evaluating the regression function at a particular x-value, x0. Ultimately, we will
fit the model at a representative range of values of x or simply at the n cases, xi. We proceed to
perform a pth-order weighted-least-squares polynomial regression of y on x,

y = b0 + b1(x− x0) + b2(x− x0)2 + · · ·+ bp(x− x0)p + e

weighting the cases in relation to their distance from the focal value x0; a common weight function
to use is the tricube function:

W (z) =

{
(1− |z|3)3 for |z| < 1

0 for |z| ≥ 1

In the present context, z = (x−x0)/h, where h determines the smoothness of the fit and so is called
a smoothing parameter. The fitted value at x0, that is, the estimated height of the regression curve,
is simply ŷ0 = b0, produced conveniently by having centered the predictor x at the focal value x0.

The value of h is either fixed for all values of x0 to provide a fixed window width, or else it is
adjusted for each x0 to include a fixed fraction s of the data. In this case s may be called the span of
the local-regression smoother. The larger the span, the smoother the result; in contrast, the larger
the order of the local regressions p, the more flexible the smooth, so the span and the order of the
local regressions can be traded off against one-another.

The process of fitting a local regression is illustrated in Figure 1, using the Canadian occupational-
prestige data introduced in Chapter 3 of the Companion, which reside in the Prestige data set in
the carData package. We examine the regression of prestige on income, focusing initially on the
case with the 80th largest income value, x(80), represented in Figure 1 by the vertical solid line.3

� A window including the 50 nearest x-neighbors of x(80) (i.e., for span s = 50/102 ≈ 1/2) is
shown in Figure 1 (a).

� The tricube weights for cases in this neighborhood appear in Figure 1 (b).

3We draw a very similar graph for different data in Figure 9.13 the R Companion.
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Figure 1: Local linear regression of prestige on income for the Canadian occupational-prestige
data: (a) The broken lines delimit the 50 nearest neighbors of x(80) (at the solid vertical line). (b)
Tricube weights for cases in the neighborhood of x(80). (c) Locally weighted linear regression in the
neighborhood of x(80); the larger magenta solid dot is the fitted value ŷ(80) above x(80). (d) The
completed locally linear regression, connecting fitted values across the range of x.
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� Figure 1 (c) shows the locally weighted regression line fit to the data in the neighborhood of
x0 (i.e., a local polynomial regression of order p = 1); the fitted value ŷ|x(80) is represented in
this graph as a larger solid dot.

� Finally, in Figure 1 (d), local regressions are estimated for a range of x-values, and the fitted
values are connected in a nonparametric-regression curve.

Figure 1 (d) is produced by the following R commands, using the lowess function4:

library("carData") # for data sets

plot(prestige ~ income, xlab="Average Income", ylab="Prestige", data=Prestige)

with(Prestige, lines(lowess(income, prestige, f=0.5, iter=0), lwd=2))

The argument f to lowess() gives the span of the local-regression smoother; iter=0 specifies that
the local regressions should not be refit to down-weight outlying cases.5

2.1.2 Multiple Regression

The nonparametric multiple regression model is

y = f(x) + ε

= f(x1, x2, . . . , xp) + ε

Extending the local-polynomial approach to multiple regression is simple conceptually, but can run
into practical difficulties.

� The first step is to define a multivariate neighborhood around a focal point x′0 = (x01, x02, . . . , x0k).
The default approach in the loess() function is to used scaled Euclidean distances:

D(xi,x0) =

√√√√ k∑
j=1

(zij − z0j)2

where the zj are the standardized predictors,

zij =
xij − xj
sj

Here, xi is the predictor vector for the ith case; xij is the value of the jth predictor for the ith
case; xj is the mean of the jth predictor; and sj is its standard deviation.

� Weights are defined using the scaled distances:

wi = W

[
D(xi,x0)

h

]
where W (·) is a suitable weight function, such as the tricube, in which case h is the half-width
(i.e., radius) of the neighborhood. As in local simple regression, h may be adjusted to define
a neighborhood including the [ns] nearest neighbors of x0 (where the square brackets denote
rounding to the nearest integer).

4Most R functions used but not described in this appendix are discussed in Fox and Weisberg (2019). All the R
code used in this appendix can be downloaded from http://tinyurl.com/carbook or via the carWeb() function in
the car package.

5By default, lowess() performs iter=3 robustness iterations, using a bisquare weight function. The idea of
weighting cases to obtain robust regression estimators, and the bisquare weight function, are described in the on-line
appendix on robust regression. Alternatively, one can use the loess.smooth() function to get the coordinates for a
local-polynomial smooth, or scatter.smooth() to draw the graph.
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� Perform a weighted polynomial regression of y on the xs; for example, a local linear fit takes
the following form:

y = b0 + b1(x1 − x01) + b2(x2 − x02) + · · ·+ bk(xk − x0k) + e

The fitted value at x0 is then simply ŷ0 = b0.

� The procedure is repeated for representative combinations of predictor values to build up a
picture of the regression surface.

Extending the illustration of the previous section, and using the loess() function, regress pres-
tige on both the income and education levels of the occupations:

mod.lo <- loess(prestige ~ income + education, span=.5, degree=1, data=Prestige)

summary(mod.lo)

Call:

loess(formula = prestige ~ income + education, data = Prestige,

span = 0.5, degree = 1)

Number of Observations: 102

Equivalent Number of Parameters: 8.03

Residual Standard Error: 6.91

Trace of smoother matrix: 10.5 (exact)

Control settings:

span : 0.5

degree : 1

family : gaussian

surface : interpolate cell = 0.2

normalize: TRUE

parametric: FALSE FALSE

drop.square: FALSE FALSE

Specifying degree=1 fits locally linear regressions; the default is degree=2 (i.e., locally quadratic
regressions). To see the full range of arguments for the loess() function, consult ?loess. The
summary() output includes the standard deviation of the residuals under the model and an estimate
of the equivalent number of parameters (or degrees of freedom) employed by the model — in this case,
about 8 parameters. In contrast, a standard linear regression model would have used 3 parameters
(the constant and 2 slopes).

As in nonparametric simple regression, there are no parameters estimates. To see the result of
the regression, we have to examine the fitted regression surface graphically, as in Figure 2, produced
by the following R commands:6

inc <- with(Prestige, seq(min(income), max(income), len=25))

ed <- with(Prestige, seq(min(education), max(education), len=25))

newdata <- expand.grid(income=inc, education=ed)

fit.prestige <- matrix(predict(mod.lo, newdata), 25, 25)

persp(inc, ed, fit.prestige, theta=45, phi=30, ticktype="detailed",

xlab="Income", ylab="Education", zlab="Prestige", expand=2/3,

shade=0.5)
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Figure 2: Fitted surface for the local linear multiple regression of prestige on income and educa-

tion.

We use the expand.grid() function to create a data frame containing combinations of values of
the two predictors, income and education; for each predictor, we take 25 values, evenly spaced
along the range of the variable. Corresponding fitted values on the regression surface are computed
by predict(). These predicted values are reshaped into a 25 by 25 matrix, which is passed to
the persp() function, along with the values of the predictors (inc and ed) used to generate the
regression surface. The arguments theta and phi to persp() control the orientation of the plot;
expand controls the relative length of the z axis; and shade controls the shading of the plotted
surface. See ?persp for details.

The relationship of prestige to education and income appears to be nonlinear, especially in
the direction of income (look at the grid lines on the regression surface). The partial regression in
the direction of each predictor does not appear to change very much as the other predictor varies,
suggesting that an additive model may be appropriate for these data. We consider such a model
below.

We can also address the contribution of each predictor by dropping it from the model and
performing an approximate incremental F -test for the change in the residual sum of squares. In
fitting these separate models, we set the span of the local simple regressions to 0.7 '

√
0.5:

mod.lo.inc <- loess(prestige ~ income, span=.7, degree=1,

data=Prestige) # omitting education

mod.lo.ed <- loess(prestige ~ education, span=.7, degree=1,

data=Prestige) # omitting income

anova(mod.lo.inc, mod.lo) # test for education

Model 1: loess(formula = prestige ~ income, data = Prestige,

span = 0.7, degree = 1)

Model 2: loess(formula = prestige ~ income + education, data = Prestige,

span = 0.5, degree = 1)

6There are alternative graphical representations of the regression surface, such as contour plots and coplots. The
latter can be used when there are more than two predictors.

7



Analysis of Variance: denominator df 90.66

ENP RSS F-value Pr(>F)

[1,] 3.85 12006

[2,] 8.03 4246 20.8 4.8e-16

anova(mod.lo.ed, mod.lo) # test for income

Model 1: loess(formula = prestige ~ education, data = Prestige,

span = 0.7, degree = 1)

Model 2: loess(formula = prestige ~ income + education, data = Prestige,

span = 0.5, degree = 1)

Analysis of Variance: denominator df 90.66

ENP RSS F-value Pr(>F)

[1,] 2.97 7640

[2,] 8.03 4246 7.79 7.1e-08

The contributions of both income and education, therefore, are associated with very small p-values.

2.2 Smoothing Splines

Smoothing splines arise as the solution to the following simple-regression problem: Find the function
m̂(x) with two continuous derivatives that minimizes the penalized sum of squares,7

SS∗(h) =

n∑
i=1

[yi −m(xi)]
2

+ h

∫ xmax

xmin

[m′′(x)]
2
dx (1)

where h is a smoothing parameter, analogous to the neighborhood-width of the local-polynomial
estimator.

� The first term in Equation 1 is the residual sum of squares.

� The second term is a roughness penalty, which is large when the integrated second derivative of
the regression function m′′(x) is large — that is, when m(x) is ‘rough’ (with rapidly changing
slope). The endpoints of the integral enclose the data.

� At one extreme, when the smoothing constant is set to h = 0 (and if all the x-values are
distinct), m̂(x) simply interpolates the data; this is similar to a local-regression estimate with
span = 1/n.

� At the other extreme, if h is very large, then m̂ will be selected so that m̂′′(x) is everywhere
0, which implies a globally linear least-squares fit to the data (equivalent to local regression
with infinitely wide neighborhoods).

The function m̂(x) that minimizes Equation 1 is a natural cubic spline with knots at the distinct
observed values of x.8 Although this result seems to imply that n parameters are required (when

7If you’re unfamiliar with calculus, the bottom line here is that the first term in SS∗(h) is the residual sum of
squares and the second term is a penalty for “wiggliness.”

8Splines are piece-wise polynomial functions that fit together (at knots); for cubic splines, the first and second
derivatives are also continuous at the knots. Natural splines place two additional knots at the ends of the data, and
constrain the function to be linear beyond these points. See Section 4.4.2 of the R Companion.

8



all x-values are distinct), the roughness penalty imposes additional constraints on the solution,
typically reducing the equivalent number of parameters for the smoothing spline substantially, and
preventing m̂(x) from interpolating the data. Indeed, it is common to select the smoothing parameter
h indirectly by setting the equivalent number of parameters for the smoother.

Because there is an explicit objective-function to optimize, smoothing splines are more elegant
mathematically than local regression. It is more difficult, however, to generalize smoothing splines to
multiple regression,9 and smoothing-spline and local-regression fits with the same equivalent number
of parameters are usually very similar.

An illustration appears in Figure 3, comparing a smoothing spline with a local-linear fit employing
the same number of equivalent parameters (degrees of freedom). We use the smooth.spline()

function along with a previous loess() model to show alternative fits (each with 3.85 equivalent
parameters) to the relationship of prestige to income:

mod.lo.inc # previously fit loess model

Call:

loess(formula = prestige ~ income, data = Prestige, span = 0.7,

degree = 1)

Number of Observations: 102

Equivalent Number of Parameters: 3.85

Residual Standard Error: 11.1

plot(prestige ~ income, data=Prestige)

inc.100 <- with(Prestige, seq(min(income), max(income), len=100)) # 100 x-values

pres <- predict(mod.lo.inc, data.frame(income=inc.100)) # fitted values

lines(inc.100, pres, lty=2, lwd=2) # loess curve

lines(with(Prestige, smooth.spline(income, prestige, df=3.85),

lwd=2)) # smoothing spline

We graph the local-linear regression by using predict() to calculate 100 fitted values over the range
of income. The two smooths are very similar: The broken line is the local-linear fit; the solid line is
the smoothing spline.

2.3 Selecting the Smoothing Parameter

Both local-polynomial regression and smoothing splines have an adjustable smoothing parameter.
This parameter may be selected by visual trial and error, picking a value that balances smoothness
against fidelity to the data. More formal methods of selecting smoothing parameters typically try
to minimize the mean-squared error of the fit, either by employing a formula approximating the
mean-square error (e.g., so-called plug-in estimates), or by some form of cross-validation.

In cross-validation, the data are divided into subsets (possibly comprising the individual cases);
the model is successively fit omitting each subset in turn; and then the fitted model is used to ‘predict’
the response for the left-out subset. Trying this procedure for different values of the smoothing
parameter suggests a value that minimizes the cross-validation estimate of the mean-squared error.
Because cross-validation is very computationally intensive, approximations and generalizations are
often employed (see, e.g., Wood, 2000, 2004).

9More complicated variants, such as thin-plate splines, generalize more easily to multiple regression. See, e.g., Gu
(2000).
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Figure 3: Local-regression (broken line) and smoothing-spline (solid line) fits for the regression of
prestige on income. Both models use 3.85 equivalent parameters.

2.4 Additive Nonparametric Regression

The additive nonparametric regression model is

y = β0 +m1(x1) +m2(x2) + · · ·+mk(xk) + ε

where the partial-regression functions mj are fit using a simple-regression smoother, such as local
polynomial regression or smoothing splines. We illustrate for the regression of prestige on income

and education, employing the gam() function in the mgcv package (Wood, 2000, 2001, 2004, 2017):

library("mgcv")

Loading required package: nlme

This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.

mod.gam <- gam(prestige ~ s(income) + s(education), data=Prestige)

summary(mod.gam)

Family: gaussian

Link function: identity

Formula:

prestige ~ s(income) + s(education)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.833 0.689 68 <2e-16

10



Income

5000
10000

15000

20000

25000

Edu
ca

tio
n

8

10

12
14

P
restige

20

40

60

80

Figure 4: Fitted surface for the additive nonparametric regression of prestige on income and
education.

Approximate significance of smooth terms:

edf Ref.df F p-value

s(income) 3.12 3.88 14.6 1.5e-09

s(education) 3.18 3.95 38.8 < 2e-16

R-sq.(adj) = 0.836 Deviance explained = 84.7%

GCV = 52.143 Scale est. = 48.414 n = 102

The s() function, used in specifying the model formula, indicates that each term is to be fit with a
smoothing spline. The degrees of freedom for each term are found by generalized cross validation:10

In this case, the equivalent of 3.118 parameters are used for the income term, and 3.177 for the
education term; the degrees of freedom for the model are the sum of these plus 1 for the regression
constant.

The additive regression surface is plotted in Figure 4:

fit.prestige <- matrix(predict(mod.gam, newdata), 25, 25)

persp(inc, ed, fit.prestige, theta=45, phi=30, ticktype="detailed",

xlab="Income", ylab="Education", zlab="Prestige", expand=2/3,

shade=0.5)

The data frame newdata, used to find predicted values on the regression surface, was calculated
earlier to draw Figure 2 (page 7) for the general nonparametric multiple-regression model fit to these
data. The two fits are quite similar. Moreover, because slices of the additive-regression surface in

10The smoothing parameters are estimated along with the rest of the model, minimizing the generalized cross-
validation criterion,

nσ̂2

n− dfmod

where σ̂2 is the estimated error variance and dfmod is the equivalent degrees of freedom for the model, including
both parametric and smooth terms. In the generalized additive model (considered below) the estimated dispersion φ̂
replaces the estimated error variance.
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Figure 5: Partial-regression functions for the additive regression of prestige on income and edu-

cation. The broken lines give point-wise 95-percent confidence envelopes around the fit.

the direction of one predictor (holding the other predictor constant) are parallel, it suffices to graph
each partial-regression function separately. This is the practical virtue of the additive-regression
model: It reduces a multidimensional (in this case, only three-dimensional) regression problem to a
series of two-dimensional partial-regression graphs. The plot() method for "gam" objects produces
these graphs, showing a point-wise 95-percent confidence envelope around the fit (Figure 5):

plot(mod.gam)

The gam function is considerably more general than this example illustrates:

� The model can include smooth (interaction) terms in two or more predictors, for example, of
the form s(income, education).

� The model can be semi-parametric, including linear terms — for example, prestige ~ s(income)

+ education.

� Certain technical options, such as the kinds of splines employed, may be selected by the user,
and the user can fix the degrees of freedom for smooth terms.

� As its name implies (GAM = generalized additive model), the gam() function is not restricted
to models with normal errors and an identity link (see below).

Hastie and Tibshirani’s (1990) gam function in the gam package predates and differs from the
gam function in the mgcv package: First, it is possible to fit partial-regression functions by local
polynomial regression, using the lo function in a model formula, as well as by smoothing splines,
using s. Second, the smoothing parameter for a term (the span for a local regression, or the degrees
of freedom for a smoothing spline) is specified directly rather than determined by generalized cross-
validation. As in the mgcv package, the gam function in the gam package can also fit generalized
additive models.

3 Generalized Nonparametric Regression

We will illustrate generalized nonparametric regression by fitting a logistic semiparametric additive
regression model to Mroz’s labor-force participation data (described in Chapter 6 of the R Compan-
ion, and included in the carData package). Recall that the response variable in this data set, lfp,
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is a factor coded yes for women in the labor-force, and no for those who are not. The predictors
include number of children five years of age or less (k5); number of children between the ages of
six and 18 (k618); the woman’s age, in years; factors indicating whether the woman (wc) and her
husband (hc) attended college, yes or no; and family income (inc), excluding the wife’s income and
given in $1000s. We ignore the remaining variable in the data set, the log of the wife’s expected wage
rate, lwg; as explained in the Companion, the peculiar definition of lwg makes its use problematic.

Because k5 and k618 are discrete, with relatively few distinct values, we will treat these predictors
as factors, modeling them parametrically, along with the factors wc and hc; as well, because there
are only 3 individuals with 3 children under 5, and only 3 with more than 5 children between 6 and
18, we use the recode() function in the car package to recode these unusual values:

library("car")

remove(list=objects()) # clean up everything

Mroz$k5f <- factor(Mroz$k5)

Mroz$k618f <- factor(Mroz$k618)

Mroz$k5f <- recode(Mroz$k5f, "3 = 2")

Mroz$k618f <- recode(Mroz$k618f, "6:8 = 5")

mod.1 <- gam(lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc,

family=binomial, data=Mroz)

summary(mod.1)

Family: binomial

Link function: logit

Formula:

lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.542 0.180 3.01 0.0026

k5f1 -1.521 0.251 -6.07 1.3e-09

k5f2 -2.820 0.500 -5.64 1.7e-08

k618f1 -0.342 0.227 -1.51 0.1316

k618f2 -0.279 0.248 -1.12 0.2608

k618f3 -0.333 0.284 -1.17 0.2415

k618f4 -0.531 0.440 -1.21 0.2269

k618f5 -0.491 0.609 -0.81 0.4206

wcyes 0.980 0.223 4.39 1.1e-05

hcyes 0.159 0.206 0.77 0.4422

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(age) 1.67 2.09 26.2 2.9e-06

s(inc) 1.74 2.19 17.6 0.00023

R-sq.(adj) = 0.128 Deviance explained = 10.9%

UBRE = 0.25363 Scale est. = 1 n = 753

Summarizing the "gam" object shows coefficient estimates and standard errors for the parametric
part of the model; the degrees of freedom used for each smooth term (in the example, for age and
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inc), and a hypothesis test for the term; and several summary statistics, including the UBRE score
for the model.11

The anova() function applied to a single "gam" object reports Wald tests for the terms in the
model:

anova(mod.1)

Family: binomial

Link function: logit

Formula:

lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc

Parametric Terms:

df Chi.sq p-value

k5f 2 55.61 8.4e-13

k618f 5 3.28 0.66

wc 1 19.26 1.1e-05

hc 1 0.59 0.44

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(age) 1.67 2.09 26.2 2.9e-06

s(inc) 1.74 2.19 17.6 0.00023

The plot() method for "gam" objects graphs the smooth terms in the model, along with point-
wise 95-percent confidence envelopes (Figure 6):

plot(mod.1)

The departures from linearity are not great. Moreover, the regression function for inc is very
imprecisely estimated at the right, where data values are sparse, and we would probably have done
well do transform inc by taking logs prior to fitting the model.

One use of additive regression models, including generalized additive models, is to test for nonlin-
earity: We may proceed by contrasting the deviance for a model that fits a term nonparametrically
with the deviance for an otherwise identical model that fits the term linearly. To illustrate, we
replace the smooth term for age in the model with a linear term:

mod.2 <- gam(lfp ~ age + s(inc) + k5f + k618f + wc + hc,

family=binomial, data=Mroz)

anova(mod.2, mod.1, test="Chisq")

Analysis of Deviance Table

Model 1: lfp ~ age + s(inc) + k5f + k618f + wc + hc

Model 2: lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 740 919

2 739 917 1.16 2.21 0.17

11For a binomial model, by default gam() minimizes the UBRE (unbiased risk estimator) criterion (Wahba, 1990)
in place of the GCV criterion.
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Figure 6: Smooth terms for age and inc in a semi-parametric generalized additive model for Mroz’s
labor-force participation data.

Likewise, we can test for nonlinearity in the inc (income) effect:

mod.3 <- gam(lfp ~ s(age) + inc + k5f + k618f + wc + hc,

family=binomial, data=Mroz)

anova(mod.3, mod.1, test="Chisq")

Analysis of Deviance Table

Model 1: lfp ~ s(age) + inc + k5f + k618f + wc + hc

Model 2: lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 740 920

2 739 917 1.26 2.55 0.15

Both tests have p-values between 0.05 and 0.1, providing only weak evidence against the null hy-
potheses of linearity.12

Similarly, we can test the statistical significance of a term in the model by dropping it and noting
the change in the deviance. For example, to test the age term:

mod.4 <- update(mod.1, . ~ . - s(age))

anova(mod.4, mod.1, test="Chisq")

Analysis of Deviance Table

Model 1: lfp ~ s(inc) + k5f + k618f + wc + hc

Model 2: lfp ~ s(age) + s(inc) + k5f + k618f + wc + hc

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 741 945

2 739 917 1.84 27.5 8.1e-07

Thus, the age effect is associated with a very small p-value.13 Compare this with the similar result

12We invite the reader to perform tests for nonlinearity for the factors k5f and k618f.
13Applied to models in which the degree of smoothing is selected by GCV or UBRE, rather than fixed, these tests

tend to exaggerate the “statistical significance” of terms in the model.
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for the Wald test for age, presented above. We leave it to the reader to perform similar tests for the
other predictors in the model, including inc and the parametric terms.

4 Complementary Reading and References

Nonparametric regression is taken up in Fox (2016, Chap. 18).
All of the nonparametric regression models discussed in this appendix (and some others, such as

projection-pursuit regression, and classification and regression trees) are described in Fox (2000a,b),
from which the examples appearing in the appendix are adapted.

The excellent and wide-ranging books by Hastie and Tibshirani (1990) and Wood (2017) are
associated respectively with the gam and mgcv packages, the latter a part of the standard R
distribution. A briefer treatment of GAMs and the gam() function in the gam package appears in
a paper by Hastie (1992).
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