Time-Series Regression and Generalized Least Squares in R*

An Appendix to An R Companion to Applied Regression, third edition

John Fox & Sanford Weisberg

last revision: 2018-09-26

Abstract

Generalized least-squares (GLS) regression extends ordinary least-squares (OLS) estimation of the normal linear model by providing for possibly unequal error variances and for correlations between different errors. A common application of GLS estimation is to time-series regression, in which it is generally implausible to assume that errors are independent. This appendix to Fox and Weisberg (2019) briefly reviews GLS estimation and demonstrates its application to time-series data using the gls() function in the nlme package, which is part of the standard R distribution.

1 Generalized Least Squares

In the standard linear model (for example, in Chapter 4 of the R Companion),

\[E(y|X) = X\beta \]

or, equivalently

\[y = X\beta + \varepsilon \]

where \(y \) is the \(n \times 1 \) response vector; \(X \) is an \(n \times k+1 \) model matrix, typically with an initial column of 1s for the regression constant; \(\beta \) is a \(k+1 \times 1 \) vector of regression coefficients to estimate; and \(\varepsilon \) is an \(n \times 1 \) vector of errors. Assuming that \(\varepsilon \sim N_n(0, \sigma^2 I_n) \), or at least that the errors are uncorrelated and equally variable, leads to the familiar ordinary-least-squares (OLS) estimator of \(\beta \),

\[b_{OLS} = (X'X)^{-1}X'y \]

with covariance matrix

\[\text{Var}(b_{OLS}) = \sigma^2(X'X)^{-1} \]

More generally, we can assume that \(\varepsilon \sim N_n(0, \Sigma) \), where the error covariance matrix \(\Sigma \) is symmetric and positive-definite. Different diagonal entries in \(\Sigma \) error variances that are not necessarily all equal, while nonzero off-diagonal entries correspond to correlated errors.

Suppose, for the time-being, that \(\Sigma \) is known. Then, the log-likelihood for the model is

\[\log L(\beta) = -\frac{n}{2} \log 2\pi - \frac{1}{2} \log(\det \Sigma) - \frac{1}{2}(y - X\beta)' \Sigma^{-1}(y - X\beta) \]

which is maximized by the generalized-least-squares (GLS) estimator of \(\beta \),

\[b_{GLS} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}y \]

with covariance matrix

\[\text{Var}(b_{GLS}) = (X'\Sigma^{-1}X)^{-1} \]
For example, when \(\Sigma \) is a diagonal matrix of (generally) unequal error variances, then \(b_{\text{GLS}} \) is just the weighted-least-squares (WLS) estimator, which can be fit in R by the \texttt{lm()} function, specifying the \texttt{weights} arguments (see, e.g., Section 4.9.4 of the \textit{R Companion}).

In a real application, of course, the error covariance matrix \(\Sigma \) is not known, and must be estimated from the data along with the regression coefficients \(\beta \). However, \(\Sigma \) has up to \(n(n+1)/2 \) free elements, so this general model has more parameters than data points. To make progress we require restrictions on the elements of \(\Sigma \).

2 Serially Correlated Errors

One common context in which the errors from a regression model are unlikely to be independent is in \textit{time-series} data, where the cases represent different moments or intervals of time, usually equally spaced. We will assume that the process generating the regression errors is \textit{stationary}: That is, all of the errors have the same expectation (already assumed to be 0) and the same variance (\(\sigma^2 \)), and the covariance of two errors depends only upon their separation \(s \) in time:

\[
C(\epsilon_t, \epsilon_{t+s}) = C(\epsilon_t, \epsilon_{t-s}) = \sigma^2 \rho_s
\]

where \(\rho_s \) is the error \textit{autocorrelation at lag} \(s \).

In this situation, the error covariance matrix has the following structure:

\[
\Sigma = \sigma^2 \begin{bmatrix}
1 & \rho_1 & \rho_2 & \cdots & \rho_{n-1} \\
\rho_1 & 1 & \rho_1 & \cdots & \rho_{n-2} \\
\rho_2 & \rho_1 & 1 & \cdots & \rho_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{n-1} & \rho_{n-2} & \rho_{n-3} & \cdots & 1
\end{bmatrix} = \sigma^2 P
\]

If we knew the values of \(\sigma^2 \) and the \(\rho_s \), then we could apply this result to find the GLS estimator of \(\beta \) in a time-series regression, but, of course, these are generally unknown parameters. Moreover, while they are many fewer than the number of elements in the unrestricted error covariance matrix \(\Sigma \), the large number \((n-1) \) of different \(\rho_s \) makes their estimation (along with \(\sigma^2 \)) impossible without specifying additional structure for the autocorrelated errors.

There are several standard models for stationary time-series; the most common for autocorrelated regression errors is the \textit{first-order auto-regressive process}, AR(1):

\[
\epsilon_t = \phi \epsilon_{t-1} + \nu_t
\]

where the \textit{random shocks} \(\nu_t \) are assumed to be \textit{Gaussian white noise}, \textit{NID}(0, \sigma^2\nu). Under this model, \(\rho_1 = \phi \), \(\rho_s = \phi^s \), and \(\sigma^2 = \sigma^2\nu / (1 - \phi^2) \). Since we must have \(|\phi| < 1 \), the error autocorrelations \(\rho_s \) decay exponentially towards 0 as \(s \) increases.\(^2\)

Higher-order autoregressive models are a direct generalization of the first-order model; for example, the second-order autoregressive model, denoted AR(2), is

\[
\epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \nu_t
\]

In contrast, in the first-order \textit{moving-average process}, MA(1), the current error depends upon the random shock from the current and previous periods (rather than upon the previous \textit{regression error}),

\[
\epsilon_t = \nu_t + \psi \nu_{t-1}
\]

\(^1\)Adjacent cases are taken by convention to be separated by 1 unit of time—e.g., 1 year in annual time-series data.

\(^2\)For the AR(1) process to be stationary, \(|\phi| \) cannot be equal to 1.
and higher-order MA(q) processes are similarly defined. Finally, AR and MA terms are combined in ARMA(p, q) processes; for example, ARMA(1, 1) errors follow the process

$$\varepsilon_t = \phi \varepsilon_{t-1} + \nu_t + \psi \nu_{t-1}$$

Examining the residual autocorrelations from a preliminary OLS regression can suggest a reasonable form for the error-generating process. The lag-s residual autocorrelation is

$$r_s = \frac{\sum_{t=s+1}^{n} e_t e_{t-s}}{\sum_{t=1}^{n} e_t^2}$$

If the residuals were independently distributed (which they are not), the standard error of each r_s would be approximately $1/\sqrt{n}$, a quantity that can be used as a rough guide to the sampling variability of the residual autocorrelations. A more accurate approach to testing hypotheses about autocorrelated errors is to calculate the Dubin-Watson statistics,

$$D_s = \frac{\sum_{t=s+1}^{n} (e_t - e_{t-s})^2}{\sum_{t=1}^{n} e_t^2}$$

which have a known, if complex, sampling distribution that depends upon the model matrix X. When the sample size is large, $D_s \approx 2(1 - r_s)$, and so Durbin-Watson statistics near 2 are indicative of small residual autocorrelation, those below 2 of positive autocorrelation, and those above 2 of negative autocorrelation.

3 Using The gls() Function in R

The gls() function in the nlme package (Pinheiro et al., 2018), which is part of the standard R distribution, fits regression models with a variety of correlated-error and non-constant error-variance structures. To illustrate the use of gls(), let us examine time-series data on women’s crime rates in Canada, analyzed by Fox and Hartnagel (1979). The data are in the Hartnagel data set in the carData package, which we load along with the car package:

```r
library("car")
Loading required package: carData
brief(Hartnagel, c(6, 2))
38 x 8 data.frame (30 rows omitted)
          year tfr partic degrees fconvict ftheft mconvict mtheft
 [i] [i] [i] [i] [n] [n] [n] [n]
1  1931  3200  234  12.4    77.1     NA  778.7     NA
2  1932  3084  234  12.9    92.9     NA  745.7     NA
3  1933  2864  235  13.9    98.3     NA  768.3     NA
```

In identifying an ARMA process, it helps to look as well at the partial autocorrelations of the residuals. For example, an AR(1) process has an exponentially decaying autocorrelation function, and a partial autocorrelation function with a single nonzero spike at lag 1. Conversely, an MA(1) process has an exponentially decaying partial autocorrelation function, and an autocorrelation function with a single nonzero spike at lag 1. Of course, these neat theoretical patterns are subject to sampling error.

The nlme package also has functions for fitting linear and nonlinear mixed models, as described in Chapter 7 of the R Companion and the on-line appendix on nonlinear regression.

R functions used but not described in this appendix are discussed in ?. All the R code used in this appendix can be downloaded from http://tinyurl.com/carbook. Alternatively, if you are running R and attached to the internet, load the car package and enter the command carWeb(script="appendix-timeseries").
Figure 1: Time series of Canadian women’s indictable-offense conviction rate, 1931–1968.

<table>
<thead>
<tr>
<th>Year</th>
<th>Convictions</th>
<th>TFR</th>
<th>Participation</th>
<th>Degrees</th>
<th>M Convictions</th>
<th>M Theft</th>
<th>F Theft</th>
<th>F Convictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1934</td>
<td>2803</td>
<td>237</td>
<td>13.6</td>
<td>88.1</td>
<td>NA</td>
<td>733.6</td>
<td>NA</td>
<td>13.6</td>
</tr>
<tr>
<td>1935</td>
<td>2755</td>
<td>238</td>
<td>13.2</td>
<td>79.4</td>
<td>20.4</td>
<td>765.7</td>
<td>247.1</td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td>2696</td>
<td>240</td>
<td>13.2</td>
<td>91.0</td>
<td>22.1</td>
<td>816.5</td>
<td>254.9</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1967</td>
<td>2586</td>
<td>339</td>
<td>80.4</td>
<td>115.2</td>
<td>70.6</td>
<td>781.1</td>
<td>272.0</td>
<td></td>
</tr>
<tr>
<td>1968</td>
<td>2441</td>
<td>338</td>
<td>90.4</td>
<td>122.9</td>
<td>73.0</td>
<td>849.7</td>
<td>274.7</td>
<td></td>
</tr>
</tbody>
</table>

The variables in the data set are as follows:

- **tfr**, the total fertility rate, births per 1000 women.
- **partic**, women’s labor-force participation rate, per 1000.
- **degrees**, women’s post-secondary degree rate, per 10,000.
- **fconvict**, women’s indictable-offense conviction rate, per 100,000.
- **ftheft**, women’s theft conviction rate, per 100,000.
- **mconvict**, men’s indictable-offense conviction rate, per 100,000.
- **mtheft**, men’s theft conviction rate, per 100,000.

We will estimate the regression of fconvict on tfr, partic, degrees, and mconvict. The rationale for including the last predictor is to control for omitted variables that affect the crime rate in general. Let us begin by examining the time series for the women’s conviction rate (Figure 1):

```r
plot(fconvict ~ year, type="n", data=Hartnagel,
     ylab="Convictions per 100,000 Women")
grid(lty=1)
with(Hartnagel, points(year, fconvict, type="o", pch=16))
```

To add grid lines, we used a sequence of commands to draw this graph. First the `plot()` function is used to set up axes and labels. The argument `type="n"` suppresses drawing any points. The

See Chapter 9 of the *R Companion* for general information about drawing graphs in R.
function `grid()` adds grid lines before adding points and lines. The call to `points()` adds both points and lines, with arguments `type="o"` to overplots points and lines, as is traditional for a time-series graph, and `pch=16` to use filled dots as the plotting characters.\(^7\) We can see that the women's conviction rate fluctuated substantially but gradually during this historical period, with no apparent overall trend.

A preliminary OLS regression produces the following fit to the data:

```r
mod.ols <- lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel)
summary(mod.ols)
```

Call:
`lm(formula = fconvict ~ tfr + partic + degrees + mconvict, data = Hartnagel)`

Residuals:
```
       Min        1Q   Median       3Q      Max
-42.960  -9.200  -3.570   6.150  48.380
```

Coefficients:
```
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) 127.64000   59.95704   2.13     0.041  
tfr          0.04657    0.00803   5.80  1.8e-06  
partic       0.25342    0.11513   2.20     0.035  
degrees      0.21205    0.21145   1.00     0.323  
mconvict     0.05910    0.04515   1.31     0.200  
```

Residual standard error: 19.2 on 33 degrees of freedom
Multiple R-squared: 0.695, Adjusted R-squared: 0.658
F-statistic: 18.8 on 4 and 33 DF, p-value: 3.91e-08

The women's crime rate, therefore, appears to decline with fertility and increase with labor-force participation; the coefficients for the other two predictors have large \(p\)-values. A graph of the residuals from the OLS regression (Figure 2), however, suggests that they may be substantially autocorrelated:\(^8\)

```r
plot(Hartnagel$year, residuals(mod.ols), type="o", pch=16,
     xlab="Year", ylab="OLS Residuals")
abline(h=0, lty=2)
```

The `acf()` function in the R `stats` package computes and plots the autocorrelation and partial-autocorrelation functions of a time series, here for the OLS residuals (Figure 3), because the residuals vary systematically with time:

```r
acf(residuals(mod.ols))
acf(residuals(mod.ols), type="partial")
```

The broken horizontal lines on the plots correspond to approximate 95% confidence limits. The general pattern of the autocorrelation and partial autocorrelation functions—sinusoidal decay in the

\(^7\) There is a `ts.plot()` function in the `stats` package in R for graphing time-series data. Although we will not need them, it is also possible to define special time-series data objects in R. For more information, consult `?ts`.

\(^8\) There also seems to be something unusual going on during World War II that is not accounted for by the predictors, a subject that we will not pursue here.
Figure 2: Residuals from the OLS regression of women’s conviction rate on several predictors.

Figure 3: Autocorrelation and partial-autocorrelation functions for the residuals from the OLS regression of women’s conviction rate on several predictors.
former: two spikes, one positive, the other negative, in the latter—is suggestive of an AR(2) process with $\phi_1 > 0$ and $\phi_2 < 0$.

We follow up by computing Durbin-Watson statistics for the OLS regression, using the `durbinWatsonTest()` function in the car package. By default, this function computes bootstrapped p-values for the Durbin-Watson statistics:\footnote{See Section 5.2.2 of the 	extit{R Companion} and the on-line appendix on bootstrapping.}

\begin{verbatim}
durbinWatsonTest(mod.ols, max.lag=5)

<table>
<thead>
<tr>
<th>lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.68834</td>
<td>0.61686</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.19227</td>
<td>1.59936</td>
<td>0.124</td>
</tr>
<tr>
<td>3</td>
<td>-0.16857</td>
<td>2.31874</td>
<td>0.312</td>
</tr>
<tr>
<td>4</td>
<td>-0.36528</td>
<td>2.69905</td>
<td>0.010</td>
</tr>
<tr>
<td>5</td>
<td>-0.36732</td>
<td>2.65211</td>
<td>0.014</td>
</tr>
</tbody>
</table>
\end{verbatim}

Alternative hypothesis: rho[lag] != 0

Three of the first five Durbin-Watson statistics have small p-values, including the first. As an alternative, the `dwtest()` function in the lmtest package (Zeileis and Hothorn, 2002) computes the p-value for the first-order Durbin-Watson statistic analytically:

\begin{verbatim}
library("lmtest")

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

dwtest(mod.ols, alternative="two.sided")

Durbin-Watson test

data: mod.ols

DW = 0.617, p-value = 1.4e-08
alternative hypothesis: true autocorrelation is not 0

Many of the arguments for the `gls()` function are the same as for `lm()` — in particular, `gls()` takes model, data, subset, and na.action arguments.

- In `gls()`, na.action defaults to na.fail: Missing data in a time-series in any event require special consideration.
- The weights argument to `gls()` can be used to specify a model for the error variance,
- As we will illustrate presently, the correlation argument can be used to specify a model for error autocorrelation.
- The method argument selects the method of estimation — method="ML" for maximum-likelihood estimation.\footnote{The default method for `gls()` is "REML" for REstricted Maximum-Likelihood, which may be thought of as correcting for degrees of freedom. In the current illustration, REML estimation produces rather different results from ML. (Try it!) To see the full range of arguments to `gls()`, consult the on-line help.}
For the Canadian women’s crime data:

```r
library("nlme")
mod.gls <- gls(fconvict ~ tfr + partic + degrees + mconvict,
               data=Hartnagel, correlation=corARMA(p=2), method="ML")
summary(mod.gls)
```

Generalized least squares fit by maximum likelihood

Model: fconvict ~ tfr + partic + degrees + mconvict
Data: Hartnagel

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
<th>BIC</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>305.41</td>
<td>318.52</td>
<td>-144.71</td>
</tr>
</tbody>
</table>

Correlation Structure: ARMA(2,0)
Formula: ~1
Parameter estimate(s):
 Phi1 Phi2
 1.06835 -0.55073

Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std.Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>83.340</td>
<td>59.471</td>
<td>1.4014</td>
<td>0.1704</td>
</tr>
<tr>
<td>tfr</td>
<td>-0.040</td>
<td>0.009</td>
<td>-4.3086</td>
<td>0.0001</td>
</tr>
<tr>
<td>partic</td>
<td>0.288</td>
<td>0.112</td>
<td>2.5677</td>
<td>0.0150</td>
</tr>
<tr>
<td>degrees</td>
<td>-0.210</td>
<td>0.207</td>
<td>-1.0158</td>
<td>0.3171</td>
</tr>
<tr>
<td>mconvict</td>
<td>0.076</td>
<td>0.035</td>
<td>2.1619</td>
<td>0.0380</td>
</tr>
</tbody>
</table>

Correlation:

<table>
<thead>
<tr>
<th></th>
<th>(Intr)</th>
<th>tfr</th>
<th>partic</th>
<th>degrees</th>
<th>mconvict</th>
</tr>
</thead>
<tbody>
<tr>
<td>tfr</td>
<td>-0.773</td>
<td></td>
<td></td>
<td></td>
<td>-0.689</td>
</tr>
<tr>
<td>partic</td>
<td>-0.570</td>
<td>-0.176</td>
<td></td>
<td></td>
<td>-0.365</td>
</tr>
<tr>
<td>degrees</td>
<td>0.093</td>
<td>0.033</td>
<td>-0.476</td>
<td></td>
<td>0.047</td>
</tr>
<tr>
<td>mconvict</td>
<td>0.689</td>
<td>0.365</td>
<td>0.047</td>
<td>0.082</td>
<td></td>
</tr>
</tbody>
</table>

Standardized residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Q1</th>
<th>Med</th>
<th>Q3</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.49915</td>
<td>-0.37170</td>
<td>-0.14945</td>
<td>0.33724</td>
<td>2.90947</td>
</tr>
</tbody>
</table>

Residual standard error: 17.702
Degrees of freedom: 38 total; 33 residual

Specifying the correlation structure as `correlation=corARMA(p=2)` fits an AR(2) process for the errors; that is, the moving-average component is implicitly of order q=0, and hence is absent. In this instance, the ML estimates of the regression parameters under the AR(2) error-correlation model are not terribly different from the OLS estimates, although the coefficient for `mconvict` now has a smaller p-value. The ML estimates of the error-autoregressive parameters are sizable, $\hat{\phi}_1 = 1.068$ and $\hat{\phi}_2 = -0.551$.

We can employ likelihood-ratio tests to check whether the parameters of the AR(2) process for the errors are necessary, and whether a second-order autoregressive model is sufficient. We proceed by updating the original "gls" model, respecifying the time-series process for the errors; we then compare nested models using the generic `anova()` function, which has a method for "gls" objects:
mod.gls.3 <- update(mod.gls, correlation=corARMA(p=3))
mod.gls.1 <- update(mod.gls, correlation=corARMA(p=1))
mod.gls.0 <- update(mod.gls, correlation=NULL)
anova(mod.gls, mod.gls.1) # AR(2) vs AR(1)

Model df AIC BIC logLik Test L.Ratio p-value
mod.gls 1 8 305.42 318.52 -144.71
mod.gls.1 2 7 312.42 323.89 -149.21 1 vs 2 9.0089 0.0027

anova(mod.gls, mod.gls.0) # AR(2) vs uncorrelated errors

Model df AIC BIC logLik Test L.Ratio p-value
mod.gls 1 8 305.41 318.52 -144.71
mod.gls.0 2 6 339.00 348.83 -163.50 1 vs 2 37.587 <.0001

anova(mod.gls.3, mod.gls) # AR(3) vs AR(2)

Model df AIC BIC logLik Test L.Ratio p-value
mod.gls.3 1 9 307.40 322.13 -144.70
mod.gls 2 8 305.42 318.52 -144.71 1 vs 2 0.018467 0.8919

An AR(3) specification would be unusually complicated, but in any event the tests support the AR(2) specification.

4 Complementary Reading and References

Time-series regression and GLS estimation are covered in Fox (2016, Chap. 16). GLS estimation is a standard topic in econometrics texts. There are substantial treatments in Judge et al. (1985) and in Greene (2018), for example. Likewise, ARMA models are a standard topic in the time-series literature; see, for example, Chatfield (2003). Time-series regression is also a much larger topic than GLS estimation of linear models with autocorrelated errors; in additions to the references cited above, see Pickup (2015) for a broad and accessible overview with social-science examples.

References

