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2. A Dichotomous Explanatory Variable

» The simplest case: one dichotomous and one quantitative explanatory
variable.

» Assumptions:
¢ Relationships are additive — the partial effect of each explanatory
variable is the same regardless of the specific value at which the other
explanatory variable is held constant.

e The other assumptions of the regression model hold.
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» The motivation for including a qualitative explanatory variable is the
same as for including an additional quantitative explanatory variable:
e to account more fully for the response variable, by making the errors
smaller; and

¢ to avoid a biased assessment of the impact of an explanatory variable,
as a consequence of omitting another explanatory variables that is
related to it.
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» Figure 1 represents idealized examples, showing the relationship
between education and income among women and men.
e In both cases, the within-gender regressions of income on education
are parallel. Parallel regressions imply additive effects of education
and gender on income.

¢ In (), gender and education are unrelated to each other: If we ignore
gender and regress income on education alone, we obtain the same
slope as is produced by the separate within-gender regressions;
ignoring gender inflates the size of the errors, however.

e In (b) gender and education are related, and therefore if we regress
income on education alone, we arrive at a biased assessment of
the effect of education on income. The overall regression of income
on education has a negative slope even though the within-gender
regressions have positive slopes.
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(@) (b)

Income
Income

Education Education

Figure 1. In both cases the within-gender regressions of income on educa-
tion are parallel: in (a) gender and education are unrelated; in (b) women
have higher average education than men.
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» We could perform separate regressions for women and men. This
approach is reasonable, but it has its limitations:
e Fitting separate regressions makes it difficult to estimate and test for
gender differences in income.

e Furthermore, if we can assume parallel regressions, then we can more
efficiently estimate the common education slope by pooling sample
data from both groups.
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2.0.1 Introducing a Dummy Regressor

» One way of formulating the common-slope model is
Yi=a+p0Xi+7D;+¢
where D, called a dummy-variable regressor or an indicator variable, is
coded 1 for men and O for women:

1 for men
D, =
0 for women

e Thus, for women the model becomes
Yi=a+8Xi+v9(0)+e&=a+pX;,+¢
e and for men
Vi=a+BXi+v(1)+e=(a+7)+0X; +e
» These regression equations are graphed in Figure 2.
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Figure 2. The parameters in the additive dummy-regression model.
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2.1 Regressors vs. Explanatory Variables

» This is our initial encounter with an idea that is fundamental to many
linear models: the distinction between explanatory variables and
regressors.

e Here, gender is a qualitative explanatory variable (or factor), with
categories (also called levels) male and female.

e The dummy variable D is a regressor, representing the explanatory
variable gender.

¢ In contrast, the quantitative explanatory variable (or covariate) income
and the regressor X are one and the same.

» We will see later that an explanatory variable can give rise to several
regressors, and that some regressors are functions of more than one
explanatory variable.
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2.2 How Dummy Regression Works

» Interpretation of parameters in the additive dummy-regression model:
e 7 gives the difference in intercepts for the two regression lines.

- Because these regression lines are parallel, v also represents the
constant separation between the lines — the expected income
advantage accruing to men when education is held constant.

- If men were disadvantaged relative to women, then v would be
negative.

e « gives the intercept for women, for whom D = 0.

e (3 is the common within-gender education slope.
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» Essentially similar results are obtained if we code D zero for men and
one for women (Figure 3):
e The sign of ~y is reversed, but its magnitude remains the same.

e The coefficient o now gives the income intercept for men.

e It is therefore immaterial which group is coded one and which is coded
zero.
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Figure 3. Parameters corresponding to the alternative coding D = 0 for
men and D = 1 for women.
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3. Polytomous Explanatory Variables

» Consider the regression of the rated prestige of occupations on their
income and education levels.
e Let us classify the occupations into three categories: (1) professional
and managerial; (2) ‘white-collar’; and (3) ‘blue-collar’.
e The three-category classification can be represented in the regression
equation by introducing two dummy regressors:

Category Dy Dy
Blue Collar 0O O
White Collar 1 O
Professional & Managerial| 0 1

e The regression model is then
Y; = o+ BlXﬂ + BQXZ'Q + ’YQDZ‘Q + ’73Di3 +&;
where X is income and X is education.

2010 by John Fox York SPIDA
y

Dummy-Variable Regression 14

e This model describes three parallel regression planes, which can differ
in their intercepts (see Figure 4):
Blue Collar: Y; = a+ B X+ By Xio + ¢
White Collar: Y; = (a+7vy) + 51 Xi1 + B9Xio + &
Professional: Y; = (a+v3) + 5; X1 + 5. Xi0 + &

- a gives the intercept for blue-collar occupations.
- 775 represents the constant vertical distance between the regression
planes for white-collar and blue-collar occupations.

- 775 represents the constant vertical difference between the parallel
regression planes for professional and blue-collar occupations (fixing
the values of education and income).

e Blue-collar occupations are coded 0 for both dummy regressors, so
‘blue collar’ serves as a baseline category to which the other occupa-
tional categories are compared.
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1 X,
1
B, B2
it 1
o +73
By
1
(X+’Y2 Bl
1
o
Xl

Figure 4. The additive dummy-regression model showing three parallel
regression planes.
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e The choice of a baseline category is usually arbitrary, for we would
fit the same three regression planes regardless of which of the three
categories is selected for this role.

» Because the choice of baseline is arbitrary, we want to test the null
hypothesis of no partial effect of occupational type,
Hop: vy =73=0
but the individual hypotheses Hy:v, = 0 and H:vy; = 0 are of less
interest.
e The hypothesis H,: v, = 73 = 0 can be tested by the incremental-
sum-of-squares approach, removing D, and D3 from the model.
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» For a polytomous explanatory variable with m categories, we code m — 1
dummy regressors.
e One simple scheme is to select the first category as the baseline,

and to code D;; = 1 when observation : falls in category j, and O
otherwise, for j =2,...,m:
Category | Dy D3 --- Dy,
1 0O 0 ---0
2 1 0 ---0
m 0O 0 ---1

e To test the hypothesis that the effects of a qualitative explanatory
variable are nil, delete its dummy regressors from the model and
compute an incremental F'-test.
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4. Modeling Interactions

» Two explanatory variables interact in determining a response variable
when the partial effect of one depends on the value of the other.
e Additive models specify the absence of interactions.

e If the regressions in different categories of a qualitative explanatory
variable are not parallel, then the qualitative explanatory variable
interacts with one or more of the quantitative explanatory variables.

e The dummy-regression model can be modified to reflect interactions.

» Consider the hypothetical data in Figure 5 (and contrast these examples
with those shown in Figure 1, where the effects of gender and education
were additive):

e In (a), gender and education are independent, since women and men
have identical education distributions.

¢ In (b), gender and education are related, since women, on average,
have higher levels of education than men.
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@) (b)

Income

Education Education

Figure 5. In both cases, gender and education interact in determining
income. In (a) gender and education are independent; in (b) women on
average have more education than men.
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e In both (a) and (b), the within-gender regressions of income on
education are not parallel — the slope for men is larger than the slope

for women.
- Because the effect of education varies by gender, education and

gender interact in affecting income.
e It is also the case that the effect of gender varies by education. Be-
cause the regressions are not parallel, the relative income advantage

of men changes with education.
- Interaction is a symmetric concept — the effect of education varies

by gender, and the effect of gender varies by education.
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» These examples illustrate another important point: Interaction and
correlation of explanatory variables are empirically and logically distinct
phenomena.

e Two explanatory variables can interact whether or not they are related
to one-another statistically.

e Interaction refers to the manner in which explanatory variables
combine to affect a response variable, not to the relationship between
the explanatory variables themselves.
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4.1 Constructing Interaction Regressors

» We could model the data in the example by fitting separate regressions
of income on education for women and men.
e A combined model facilitates a test of the gender-by-education
interaction, however.

e A properly formulated unified model that permits different intercepts
and slopes in the two groups produces the same fit to the data as
separate regressions.

» The following model accommodates different intercepts and slopes for
women and men:
Y; = o+ BXz + ’)/DZ' + (S(XZDZ) +&;
e Along with the dummy regressor D for gender and the quantitative
regressor X for education, | have introduced the interaction regressor
XD.
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e The interaction regressor is the product of the other two regressors:
XD is a function of X and D, but it is not a linear function, avoiding
perfect collinearity.

e For women,
Y = a+ BX;+79(0)+6(X;-0)+¢
= a+ X, +¢
e and for men,
Vi = a+ 06X +~v(1) +0(X;- 1) +¢
= (a+7)+B+0)Xi+e
» These regression equations are graphed in Figure 6:

e o and [ are the intercept and slope for the regression of income on
education among women.

e 7 gives the difference in intercepts between the male and female
groups

e ) gives the difference in slopes between the two groups.
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Y
D=1
B+3d
1
D=0
B
o+y 1
o
0 X

Figure 6. The parameters in the dummy-regression model with interaction.
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- To test for interaction, we can test the hypothesis Hy: 6 = 0.

» In the additive, no-interaction model, ~ represented the unique partial
effect of gender, while the slope 3 represented the unique partial effect
of education.

e In the interaction model, v is no longer interpretable as the unqualified
income difference between men and women of equal education — ~y
Is now the income difference at X = 0.

e Likewise, in the interaction model, 3 is not the unqualified partial effect
of education, but rather the effect of education among women.
- The effect of education among men (3 + ¢) does not appear directly
in the model.

» Extension to polytomous factors is straight-forward.
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5. The Principle of Marginality

» The separate partial effects, or main effects, of education and gender
are marginal to the education-by-gender interaction.

» In general, we neither test nor interpret main effects of explanatory
variables that interact.
e If we can rule out interaction either on theoretical or empirical grounds,
then we can proceed to test, estimate, and interpret main effects.

» It does not generally make sense to specify and fit models that include
interaction regressors but that delete main effects that are marginal to
them.

e Such models — which violate the principle of marginality — are
interpretable, but they are not broadly applicable.
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e Consider the model
- As shown in Figure 7 (a), this model describes regression lines
for women and men that have the same intercept but (potentially)
different slopes, a specification that is peculiar and of no substantive
interest.

e Similarly, the model
graphed in Figure 7 (b), constrains the slope for women to 0, which is
needlessly restrictive.
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(a) (b)
Y D=1 v D=1
B+d )
D=0
1 1
B
1
o o+y
o D=0
0 X 0 X

Figure 7. Two models that violate the principle of marginality, by including
the interaction regressor X D but (a) omitting D or (b) omitting X.
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