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1. Topics
I A Dichotomous explanatory variable

I Polytomous Explanatory Variables

I Modeling Interactions

I The Principle of Marginality
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2. A Dichotomous Explanatory Variable
I The simplest case: one dichotomous and one quantitative explanatory

variable.

I Assumptions:
• Relationships are additive — the partial effect of each explanatory

variable is the same regardless of the specific value at which the other
explanatory variable is held constant.

• The other assumptions of the regression model hold.
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I The motivation for including a qualitative explanatory variable is the
same as for including an additional quantitative explanatory variable:
• to account more fully for the response variable, by making the errors

smaller; and

• to avoid a biased assessment of the impact of an explanatory variable,
as a consequence of omitting another explanatory variables that is
related to it.
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I Figure 1 represents idealized examples, showing the relationship
between education and income among women and men.
• In both cases, the within-gender regressions of income on education

are parallel. Parallel regressions imply additive effects of education
and gender on income.

• In (a), gender and education are unrelated to each other: If we ignore
gender and regress income on education alone, we obtain the same
slope as is produced by the separate within-gender regressions;
ignoring gender inflates the size of the errors, however.

• In (b) gender and education are related, and therefore if we regress
income on education alone, we arrive at a biased assessment of
the effect of education on income. The overall regression of income
on education has a negative slope even though the within-gender
regressions have positive slopes.
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Figure 1. In both cases the within-gender regressions of income on educa-
tion are parallel: in (a) gender and education are unrelated; in (b) women
have higher average education than men.
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I We could perform separate regressions for women and men. This
approach is reasonable, but it has its limitations:
• Fitting separate regressions makes it difficult to estimate and test for

gender differences in income.

• Furthermore, if we can assume parallel regressions, then we can more
efficiently estimate the common education slope by pooling sample
data from both groups.
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2.0.1 Introducing a Dummy Regressor

I One way of formulating the common-slope model is
 =  +  +  + 

where , called a dummy-variable regressor or an indicator variable, is
coded 1 for men and 0 for women:

 =

½
1 for men
0 for women

• Thus, for women the model becomes
 =  +  + (0) +  =  +  + 

• and for men
 =  +  + (1) +  = ( + ) +  + 

I These regression equations are graphed in Figure 2.
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Figure 2. The parameters in the additive dummy-regression model.
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2.1 Regressors vs. Explanatory Variables
I This is our initial encounter with an idea that is fundamental to many

linear models: the distinction between explanatory variables and
regressors.
• Here, gender is a qualitative explanatory variable (or factor ), with

categories (also called levels) male and female.

• The dummy variable  is a regressor, representing the explanatory
variable gender.

• In contrast, the quantitative explanatory variable (or covariate) income
and the regressor  are one and the same.

I We will see later that an explanatory variable can give rise to several
regressors, and that some regressors are functions of more than one
explanatory variable.
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2.2 How Dummy Regression Works
I Interpretation of parameters in the additive dummy-regression model:
•  gives the difference in intercepts for the two regression lines.
· Because these regression lines are parallel,  also represents the

constant separation between the lines — the expected income
advantage accruing to men when education is held constant.

· If men were disadvantaged relative to women, then  would be
negative.

•  gives the intercept for women, for whom  = 0.

•  is the common within-gender education slope.
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I Essentially similar results are obtained if we code  zero for men and
one for women (Figure 3):
• The sign of  is reversed, but its magnitude remains the same.

• The coefficient  now gives the income intercept for men.

• It is therefore immaterial which group is coded one and which is coded
zero.
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Figure 3. Parameters corresponding to the alternative coding  = 0 for
men and  = 1 for women.
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3. Polytomous Explanatory Variables
I Consider the regression of the rated prestige of occupations on their

income and education levels.
• Let us classify the occupations into three categories: (1) professional

and managerial; (2) ‘white-collar’; and (3) ‘blue-collar’.

• The three-category classification can be represented in the regression
equation by introducing two dummy regressors:

Category 2 3

Blue Collar 0 0
White Collar 1 0
Professional & Managerial 0 1

• The regression model is then
 =  + 11 + 22 + 22 + 33 + 

where 1 is income and 2 is education.
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• This model describes three parallel regression planes, which can differ
in their intercepts (see Figure 4):

Blue Collar:  =  + 11 + 22 + 
White Collar:  = ( + 2) + 11 + 22 + 
Professional:  = ( + 3) + 11 + 22 + 

·  gives the intercept for blue-collar occupations.

· 2 represents the constant vertical distance between the regression
planes for white-collar and blue-collar occupations.

· 3 represents the constant vertical difference between the parallel
regression planes for professional and blue-collar occupations (fixing
the values of education and income).

• Blue-collar occupations are coded 0 for both dummy regressors, so
‘blue collar’ serves as a baseline category to which the other occupa-
tional categories are compared.
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Figure 4. The additive dummy-regression model showing three parallel
regression planes.
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• The choice of a baseline category is usually arbitrary, for we would
fit the same three regression planes regardless of which of the three
categories is selected for this role.

I Because the choice of baseline is arbitrary, we want to test the null
hypothesis of no partial effect of occupational type,

0: 2 = 3 = 0

but the individual hypotheses 0: 2 = 0 and 0: 3 = 0 are of less
interest.
• The hypothesis 0: 2 = 3 = 0 can be tested by the incremental-

sum-of-squares approach, removing 2 and 3 from the model.
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I For a polytomous explanatory variable with  categories, we code −1
dummy regressors.
• One simple scheme is to select the first category as the baseline,

and to code  = 1 when observation  falls in category , and 0
otherwise, for  = 2    :

Category 2 3 · · · 

1 0 0 · · · 0
2 1 0 · · · 0
·
·
·

·
·
·

·
·
·

·
·
·

 0 0 · · · 1

• To test the hypothesis that the effects of a qualitative explanatory
variable are nil, delete its dummy regressors from the model and
compute an incremental  -test.
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4. Modeling Interactions
I Two explanatory variables interact in determining a response variable

when the partial effect of one depends on the value of the other.
• Additive models specify the absence of interactions.

• If the regressions in different categories of a qualitative explanatory
variable are not parallel, then the qualitative explanatory variable
interacts with one or more of the quantitative explanatory variables.

• The dummy-regression model can be modified to reflect interactions.

I Consider the hypothetical data in Figure 5 (and contrast these examples
with those shown in Figure 1, where the effects of gender and education
were additive):
• In (a), gender and education are independent, since women and men

have identical education distributions.

• In (b), gender and education are related, since women, on average,
have higher levels of education than men.
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Figure 5. In both cases, gender and education interact in determining
income. In (a) gender and education are independent; in (b) women on
average have more education than men.
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• In both (a) and (b), the within-gender regressions of income on
education are not parallel — the slope for men is larger than the slope
for women.
· Because the effect of education varies by gender, education and

gender interact in affecting income.

• It is also the case that the effect of gender varies by education. Be-
cause the regressions are not parallel, the relative income advantage
of men changes with education.
· Interaction is a symmetric concept — the effect of education varies

by gender, and the effect of gender varies by education.
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I These examples illustrate another important point: Interaction and
correlation of explanatory variables are empirically and logically distinct
phenomena.
• Two explanatory variables can interact whether or not they are related

to one-another statistically.

• Interaction refers to the manner in which explanatory variables
combine to affect a response variable, not to the relationship between
the explanatory variables themselves.
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4.1 Constructing Interaction Regressors
I We could model the data in the example by fitting separate regressions

of income on education for women and men.
• A combined model facilitates a test of the gender-by-education

interaction, however.

• A properly formulated unified model that permits different intercepts
and slopes in the two groups produces the same fit to the data as
separate regressions.

I The following model accommodates different intercepts and slopes for
women and men:

 =  +  +  + () + 
• Along with the dummy regressor  for gender and the quantitative

regressor  for education, I have introduced the interaction regressor
.
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• The interaction regressor is the product of the other two regressors:
 is a function of  and , but it is not a linear function, avoiding
perfect collinearity.

• For women,
 =  +  + (0) + ( · 0) + 

=  +  + 

• and for men,
 =  +  + (1) + ( · 1) + 

= ( + ) + ( + ) + 

I These regression equations are graphed in Figure 6:
•  and  are the intercept and slope for the regression of income on

education among women.

•  gives the difference in intercepts between the male and female
groups

•  gives the difference in slopes between the two groups.
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Figure 6. The parameters in the dummy-regression model with interaction.
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· To test for interaction, we can test the hypothesis 0:  = 0.

I In the additive, no-interaction model,  represented the unique partial
effect of gender, while the slope  represented the unique partial effect
of education.
• In the interaction model,  is no longer interpretable as the unqualified

income difference between men and women of equal education — 

is now the income difference at  = 0.

• Likewise, in the interaction model,  is not the unqualified partial effect
of education, but rather the effect of education among women.
· The effect of education among men ( + ) does not appear directly

in the model.

I Extension to polytomous factors is straight-forward.
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5. The Principle of Marginality
I The separate partial effects, or main effects, of education and gender

are marginal to the education-by-gender interaction.

I In general, we neither test nor interpret main effects of explanatory
variables that interact.
• If we can rule out interaction either on theoretical or empirical grounds,

then we can proceed to test, estimate, and interpret main effects.

I It does not generally make sense to specify and fit models that include
interaction regressors but that delete main effects that are marginal to
them.
• Such models — which violate the principle of marginality — are

interpretable, but they are not broadly applicable.
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• Consider the model
 =  +  + () + 

· As shown in Figure 7 (a), this model describes regression lines
for women and men that have the same intercept but (potentially)
different slopes, a specification that is peculiar and of no substantive
interest.

• Similarly, the model
 =  +  + () + 

graphed in Figure 7 (b), constrains the slope for women to 0, which is
needlessly restrictive.
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Figure 7. Two models that violate the principle of marginality, by including
the interaction regressor  but (a) omitting  or (b) omitting .
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