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1. Topics
I Effect displays for generalized linear models

I Extension of effect displays to:
• Multinomial logit model
• Proportional-odds model
• Generalized linear mixed-effects models

I Examples using the effects package in R
• The effects package was written with Sanford Weisberg and Jangman

Hong.
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3. Effect Displays for Generalized Linear
Models
I Effect displays, in the sense of Fox (1987, 2003), are tabular or graphical

summaries of statistical models.
• They are typically simpler to interpret than the regression coefficients

— often much simpler — for models with complex structure, such
as interactions, polynomial regressors, or regression splines, and for
models that are nonlinear on the scale of the response variable.

I The general idea underlying effect displays is to represent a statistical
model by showing portions of its response surface, allowing some
predictors to vary over their observed ranges while others are held
constant at typical values.

I A general principle of interpretation for statistical models containing
terms that are marginal to others (Nelder, 1977) is that high-order terms
should be combined with their lower-order relatives.
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• For example, an interaction between two factors should be combined
with the main effects marginal to the interaction.

• Fox (1987) suggests identifying the high-order terms in a generalized
linear model.
– Fitted values under the model are computed for each such term.
– The lower-order “relatives” of a high-order term (e.g., main effects

marginal to an interaction, or a linear and quadratic term in a third-
order polynomial) are absorbed into the term, allowing the predictors
appearing in the term to range over their values.

– The values of other predictors are fixed at typical values:
· A covariate could be fixed at its mean or median.
· A factor could be fixed at its proportional distribution in the data, or

to equal proportions in its several levels.
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I Some models have high-order terms that “overlap” — that is, that share
a lower-order relative (other than the constant).
• For example, a generalized linear model may include interactions ,

, and among the three factors , , and .
• Although the three-way interaction is not in the model, it can

be illuminating to combine the three high-order terms and their
lower-order relatives (Fox, 2003).

I Consider a generalized linear model with linear predictor = X and
link function ( ) = , where is the expectation of the response vector
y.
• We have an estimate b of , along with the estimated covariance

matrix b (b) of b.
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• Let the rows of X include all combinations of values of predictors
appearing in a high-order term, along with typical values of the
remaining predictors.
– The column structure ofX with respect, for example, to interactions,

is the same as that of the model matrix X.
• Then the fitted values b = X b represent the effect in question.

– A table or graph of these values — or of the fitted values transformed
to the scale of the response, 1(b ) — is an effect display.

• The standard errors of b are the square-root diagonal entries of
X b (b)X 0.
– These may be used to compute point-wise confidence intervals for

the effects, the end-points of which may then also be transformed to
the scale of the response.

Institute of Statistical Mathematics/Tokyo Copyright c°2012 by John Fox

Effect Displays with the effects Package 7

• We prefer plotting on the scale of the linear predictor (where the
structure of the model — e.g., linearity — is preserved) but labelling
the response axis on the scale of the response.
– This approach makes the display invariant with respect to the values

at which the omitted predictors are held constant, in that only the
labelling of the response axis changes with a different selection of
these values.
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3.1 Preliminary Example: A Binary Logit Model for
Toronto Arrests for Marijuana Possession
I We construct effect displays for a binary logit model fit to data on

police treatment of individuals arrested in Toronto for simple possession
of small quantities of marijuana, where the police have the option of
releasing an arrestee with a summons.
• The principal question of interest is whether and how the probability

of release is influenced by the subject’s sex, race (“color”), age,
employment status, and citizenship, the year in which the arrest took
place, and the subject’s previous police record (“checks”).

I Preliminary analysis of the data suggested a logit model including
interactions between color and year and between color and age, and
main effects of employment status, citizenship, and checks.

I am grateful to Michael Friendly of York University, Toronto, for making these data
available to me.
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I Estimated coefficients and their standard errors:

Coefficient Estimate Standard Error
Constant 0 344 0 310
Employed (Yes) 0 735 0 085
Citizen (Yes) 0 586 0 114
Checks 0 367 0 026
Color (White) 1 213 0 350
Year (1998) 0 431 0 260
Year (1999) 0 094 0 261
Year (2000) 0 011 0 259
Year (2001) 0 243 0 263
Year (2002) 0 213 0 353
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Coefficient Estimate Standard Error
Age 0 029 0 009
Color (White) × Year (1998) 0 652 0 313
Color (White) × Year (1999) 0 156 0 307
Color (White) × Year (2000) 0 296 0 306
Color (White) × Year (2001) 0 381 0 304
Color (White) × Year (2002) 0 617 0 419
Color (White) × Age 0 037 0 010

• It is difficult to tell from the coefficients how the predictors combine to
influence the response.

I Two illustrative effect displays for the Toronto marijuana-arrests data:
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Effect display for the color-by-age interaction:
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Effect display combining the color-by-age and color-by-year interactions:
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I For the effect display of the color-by-age interaction,X has the following
structure:

( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) ( 9)
constant employed citizen checks color 1998 1999 2000 2001

1 0 79 0 85 1 64 0 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 1 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 0 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 1 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 0 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 1 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 0 0 17 0 21 0 24 0 23
1 0 79 0 85 1 64 1 0 17 0 21 0 24 0 23
... ... ... ... ... ... ... ... ...
1 0 79 0 85 1 64 1 0 17 0 21 0 24 0 23

· · ·
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· · ·

( 10) ( 11) ( 12) ( 13) ( 14) ( 15) ( 16) ( 17)
2002 age col× 98 col× 99 col× 00 col× 01 col× 02 col× age
0 05 15 0 0 0 0 0 0
0 05 15 0 17 0 21 0 24 0 23 0 05 15
0 05 16 0 0 0 0 0 0
0 05 16 0 17 0 21 0 24 0 23 0 05 16
0 05 17 0 0 0 0 0 0
0 05 17 0 17 0 21 0 24 0 23 0 05 17
0 05 18 0 0 0 0 0 0
0 05 18 0 17 0 21 0 24 0 23 0 05 18

... ... ... ... ... ... ... ...
0 05 65 0 17 0 21 0 24 0 23 0 05 65

• Column 1 of X of 1s represents the constant regressor.
• Column 2 reflects the 79 percent of arrestees who were at level Yes of

employed, and hence had values of 1 on the treatment-coded contrast
for this factor.
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– 0.79 is therefore also the mean of the contrast. The display is,
however, invariant with respect to contrast coding.

– This column, along with other constant columns in X , is in effect
absorbed in the constant term, and therefore influences only the
average level of the computed effects.

• Column 3 reflects the 85 percent of arrestees who were in level Yes of
citizen.

• Column 4 reflects the average value of checks, 1.64.
• Column 5 repeats the two values 0 and 1 for the contrast for color (to

be taken in combination with the values of age in column 11).
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• Columns 6 through 10 represent the contrasts for year, and contain
the proportions of arrestees in years 1998 through 2002; this reflects
the use of the first level of year, 1997, as the baseline level.

• Column 11 contains the twice-repeated integer values of age, from
15 through 65. Because the age effect is linear on the logit scale, we
really only need the two extreme values 15 and 65 — as long as we
plot on the logit scale.

• Columns 12 through 16 are for the interaction of color with year (which
is absorbed in the color term — i.e., these columns are constant within
color).

• Column 17 is for the color by age interaction.
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4. Extending Effect Displays
4.1 The Multinomial Logit Model
I Letting denote the probability that observation belongs to response

category of categories, the multinomial logit model is

=
exp(x0 )P
=1

exp(x0 )
for = 1

• where x0 = (1 2 ) is the model vector for observation ;

• and =
¡

1 2

¢0 is the parameter vector for response
category .

I The model is over-parametrized because
P

=1 = 1.
• To handle this feature of the model, we set = 0.
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I Manipulating the model,
log = x0 for = 1 1

• For any pair of categories:
log

0
= x0( 0) for 0 6=
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I But this does not produce intuitively easy-to-grasp coefficients, even for
models in which the structure of the model vector x0 is simple.

I Our strategy for building effect displays is essentially the same as for
generalized linear models: Find fitted values — in this case, fitted
probabilities — under the model for selected combinations of the
predictors.

I Finding standard errors for fitted values on the probability scale is
harder.
• The fitted probabilities are nonlinear functions of the model parame-

ters.
• The linear predictor = x0 is for the logit comparing category to

category , not for the logit comparing category to its complement,
log
£

(1 )
¤
.

I We proceed by the delta method:
• Suppose that we compute the fitted value at x00.

Institute of Statistical Mathematics/Tokyo Copyright c°2012 by John Fox



Effect Displays with the effects Package 20

– Differentiating 0 with respect to the model parameters:

0
=
exp(x00 )

h
1 +

P 1
0=1 0 6= exp(x

0
0 0)

i
x0h

1 +
P 1

0=1 exp(x
0
0 0)

i2
0

0 6=
=

©
exp

£
x00
¡

0 +
¢¤ª

x0h
1 +

P 1
0=1 exp(x

0
0 0)

i2
0 =

exp(x00 )x0h
1 +

P 1
0=1 exp(x

0
0 0)

i2
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• Let the estimated asymptotic covariance matrix of the (stacked)
coefficient vectors be given by

bV(b) = bV
b
1b
2...b
1

= [ ] = 1

where = ( 1) represents the total number of parameters in the

combined parameter vectors.
• Then bV(b0 ) X

=1

X
=1

b0b b0b
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• Because the b0 are bounded by 0 and 1, we re-express the category
probabilities 0 as logits,

0 = log
0

1 0

• Differentiating with respect to 0 :
0

0

=
1

0 (1 0 )

• By a second application of the delta method,bV(b0 ) 1b20 (1 b0 )2 bV(b0 )
• Using this result, we can form a confidence interval around b0 , and

then translate the end-points back to the probability scale.
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4.2 The Proportional-Odds Logit Model
I The proportional-odds logit model is a common model for an ordinal

response variable.
• Suppose that there is a continuous, but unobservable, response

variable, , which is a linear function of a predictor vector x0 plus a
random error:

= x0 +

= +

• We cannot observe directly, but instead implicitly dissect its range into
class intervals at the (unknown) thresholds 1 2 · · · 1,

producing the observed ordinal response variable :

=

1 for 1

2 for 1 2
...
1 for 2 1

for 1
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• The cumulative probability distribution of is given by
Pr( ) = Pr( )

= Pr( + )

= Pr( )

for = 1 2 1.
• If the errors are independently distributed according to the standard

logistic distribution, with distribution function

( ) =
1

1 +
then we get the proportional-odds logit model:

logit[Pr( )] = log
Pr( )

Pr( )

= + 0x
for = 1 2 1.
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• This model is over-parametrized: Since the vector typically includes
a constant, say 1, we have 1 regression equations, the intercepts
of which are expressed in terms of parameters.
– A solution is to eliminate the constant from – i.e., setting 1 = 0,

which establishes the origin of the latent continuum .
– For convenience, we absorb the negative sign into the intercept:

logit[Pr( )] = + 0x for = 1 2 1

– Then the thresholds are the negatives of the intercepts .
– When it adequately represents the data, the proportional-odds model

(with + 2 independent parameters) is more parsimonious
than the multinomial logit model [with ( 1) independent
parameters]. The proportional-odds model isn’t, however, nested in
the multinomial logit model.

Institute of Statistical Mathematics/Tokyo Copyright c°2012 by John Fox

Effect Displays with the effects Package 26

I We consider two strategies for constructing effect displays for the
proportional-odds model:
(a) Plot on the scale of the latent continuum, using the estimated

thresholds, b , to show the division of the continuum into ordered
categories.
– A nice characteristic of the standard logistic distribution is that its

quartiles are very close to ±1, making the conditional distribution of
the latent variable easy to interpret visually.

(b) Display fitted probabilities of category membership, as for the
multinomial logit model.
– Suppose that we need the fitted probabilities at x00
– Let 0 = x

0
0 , and let 0 = Pr( 0 = ).
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– Then

01 =
1

1 + exp( 1 + 0)

0 =
exp( 0) [exp( 1) exp( )]

[1 + exp( 1 + 0)] [1 + exp( + 0)]
= 2 1

0 = 1
1X

=1

0
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– We derive approximate standard errors by the delta method:
01

1
=

exp( 1 + 0)

[1 + exp( 1 + 0)]
2

01 = 0 = 2 1

01 =
exp( 1 + 0)x0

[exp( 1 + 0)]
2

0

1
=

exp( 1 + 0)

[1 + exp( 1 + 0)]
2

0
=

exp( + 0)

[1 + exp( + 0)]
2

0

0
= 0 0 6= 1

0
=
exp( 0) [exp( ) exp( 1)] [exp( 1 + + 2 0) 1]x0

[1 + exp( 1 + 0)]
2 [1 + exp( + 0)]

2
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0

1
=

exp( 1 + 0)

[1 + exp( 1 + 0)]
2

0 = 0 = 1 2

0 =
exp( 1 + 0)x0

[1 + exp( 1 + 0)]
2

– Stack up all of the parameters in the vector = ( 1 1
0)0,

and let bV(b) = [ ] = 1
where = + 2.
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– Then, as for the multinomial logit model,bV(b0 ) X
=1

X
=1

b0b b0b
and bV(b0 ) 1b20 (1 b0 )2 bV(b0 )
where

0 = log
0

1 0
are the individual-category logits.
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4.3 Generalized Linear Mixed-Effects Models
I Mixed-effects models are models for dependent data, where, in the

simplest cases, level-1 units (such as individuals) are clustered into
level-2 units (such as institutions).

I Mixed-effects models are also appropriate for longitudinal data, in which
level-2 units (say, individuals) are observed on multiple occasions.

I In both cases, it is generally unreasonable to assume that observatiions
within a cluster are independent of one-another.

I The linear mixed-effects model takes the form
y = X + Z b +

b N (0 )

b b 0 are independent for 6= 0

N (0 2 )

0 are independent for 6= 0
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where
• y is the × 1 response vector for observations in the th cluster;
• X is the × model matrix for the fixed effects for observations in

cluster ;
• is the × 1 vector of fixed-effect coefficients, which are the same

across clusters;
• Z is the × model matrix for the random effects for observations in

cluster ;
• b is the × 1 vector of random-effect coefficients for cluster ;

expressed as a deviation from the fixed effects;
• is the × 1 vector of errors for observations in cluster ;
• is the × covariance matrix for the random effects;
• 2 is the × covariance matrix for the errors in cluster , and is

2I if the within-group errors are independent with constant variance.
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I The generalized linear mixed-effects model (GLMM) is a straightforward
extension of the generalized linear model, adding random effects to
the linear predictor, and expressing the expected value of the response
conditional on the random effects:

( ) = [ ( | 1 )] =

= 1 + 2 2 + · · · + + 1 1 + · · · +
• The link function () is as in generalized linear models.
• The conditional distribution of given the random effects is a

member of an exponential family, or — for quasi-likelihood estimation
— the variance of | 1 is a function of and a dispersion
parameter .

• We make the usual assumptions about the random effects: That they
are multinormally distributed with mean 0 and covariance matrix .
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I Adapting effect displays to the fixed effects in GLMMs is straightforward
since in the process of fitting the model to data we obtain estimates of
the fixed-effects parameters and their asymptotic covariance matrix.
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5. Examples
5.1 A Multinomial Logit Model: Political Knowledge
and Party Choice in Britain
I The data for this example are from the 2001 wave of the British Election

Panel Study (BEPS).
• The response variable is party choice, with three categories: Labour,

Conservative, and Liberal Democrat.
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• Explanatory variables:
– “Europe” is an 11-point scale that measures respondents’ attitudes

towards European integration; high scores represent “Eurosceptic”
sentiment.

– “Political knowledge” taps knowledge of party platforms on the
European integration issue; the scale ranges from 0 (low knowledge)
to 3 (high knowledge).
· An analysis of deviance suggests that a linear specification for

knowledge is acceptable.
– The model also includes age, gender, perceptions of economic

conditions over the past year (both national and household), and
evaluations of the leaders of the three major parties.
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I Estimated coefficients and their standard errors from a final multinomial
logit model fit to the data:

Labour/Liberal Democrat
Coefficient Estimate Standard Error
Constant 0 155 0 612
Age 0 005 0 005
Gender (male) 0 021 0 144
Perceptions of Economy 0 377 0 091
Perceptions of Household Econ. Position 0 171 0 082
Evaluation of Blair (Labour leader) 0 546 0 071
Evaluation of Hague (Cons. leader) 0 088 0 064
Evaluation of Kennedy (Lib. Dem. leader) 0 416 0 072
Europe 0 070 0 040
Political Knowledge 0 502 0 155
Europe × Knowledge 0 024 0 021
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Cons./Liberal Democrat
Coefficient Estimate Standard Error
Constant 0 718 0 734
Age 0 015 0 006
Gender (male) 0 091 0 178
Perceptions of Economy 0 145 0 110
Perceptions of Household Econ. Position 0 008 0 101
Evaluation of Blair (Labour leader) 0 278 0 079
Evaluation of Hague (Cons. leader) 0 781 0 079
Evaluation of Kennedy (Lib. Dem. leader) 0 656 0 086
Europe 0 068 0 049
Political Knowledge 1 160 0 219
Europe × Knowledge 0 183 0 028
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5.2 A Proportional-Odds Logit Model: Cross-National
Differences in Attitudes Towards Government Efforts
to Reduce Poverty
I Data for this example are taken from the World Values Survey of

1995-97, focusing on four countries: Australia, Norway, Sweden, and
the United States.
• The response variable: “Do you think that what the government is

doing for people in poverty in this country is about the right amount,
too much, or too little?” — ordered: too little about right too much.

• Explanatory variables include gender, religion (coded 1 if the respon-
dent belonged to a religion, 0 if the respondent did not), education
(coded 1 if the respondent had a university degree, 0 if not), and
country (dummy coded, with Sweden as the reference category).
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• Preliminary analysis of the data suggested modeling the effect of age
as a cubic polynomial (we use an orthogonal cubic polynomial) and
including an interaction between age and country.

I The coefficients and their standard errors from a final model:

Coefficient Estimate Standard Error
Gender (male) 0 169 0 053
Religion (Yes) 0 168 0 078
University degree (Yes) 0 141 0 067
Age (linear) 10 659 5 404
Age (quadratic) 7 535 6 245
Age (cubic) 8 887 6 663
Norway 0 250 0 087
Australia 0 572 0 082
USA 1 176 0 087
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Coefficient Estimate Standard Error
Norway × Age (linear) 7 905 7 091
Australia × Age (linear) 9 267 6 313
USA × Age (linear) 10 871 6 647
Norway × Age (quadratic) 0 623 8 028
Australia × Age (quadratic) 17 719 7 035
USA × Age (quadratic) 7 689 7 352
Norway × Age (cubic) 0 489 8 568
Australia × Age (cubic) 2 761 7 385
USA × Age (cubic) 11 164 7 587
Thresholds
Too Little | About Right 0 785 0 109
About Right | Too Much 2 598 0 115
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5.3 A Linear Mixed-Effects Model: Exercise and
Eating Disorders
I This example is drawn from work by Blackmoor, Davis, and Fox on the

exercise histories of 138 teenaged girls who were hospitalized for eating
disorders and of 93 “control” subjects.

I There are several observations for each subject, but because the girls
were hospitalized at different ages, the number of observations and the
age at the last observation vary.

Institute of Statistical Mathematics/Tokyo Copyright c°2012 by John Fox

Effect Displays with the effects Package 43

I The variables in the data set are:
• subject: an identification number, necessary to keep track of which

observations belong to each subject.
• age: the subject’s age, in years, at the time of observation. All but

the last observation for each subject were collected retrospectively
at intervals of two years, starting at age eight. The age at the last
observation is recorded to the nearest day.

• exercise: the amount of exercise in which the subject engaged,
expressed as hours per week.

• group: a factor indicating whether the subject is a patient or a control.

I It is of interest here to determine the typical trajectory of exercise
over time, and to establish whether this trajectory differs between
eating-disordered and control subjects.
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I Preliminary examination of the data suggests a log transformation of
exercise.

I The model that I eventually fit to the data is of the form
log2

¡
exercise + 5

60

¢
= 1 + 2

¡
age 8

¢
+ 3 group

+ 4

¡
age 8

¢× group + 1 +

for individual measured on occasion , where the level-1 errors, ,
follow a continuous-time first-order autoregressive process, for which

corr( + ) = ( ) = | |

and is not necessarily an integer.
• group is a dummy variable, coded 1 for patients and 0 for controls.
• This is a so-called random-intercept model.

Institute of Statistical Mathematics/Tokyo Copyright c°2012 by John Fox

Effect Displays with the effects Package 45

I The estimates for this model are as follows:
Parameter Estimate Standard Errors

Fixed-Effect Parameters
1 0 307 0 189

2 0 073 0 032

3 0 284 0 245

4 0 227 0 040
Random-Effect Parametersqb( 1) 1 150b 1 529b 0 631
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