
The Default Effect Method

John Fox and Sanford Weisberg

February 22, 2018

The effects package in R is designed primarily to draw graphs that visualize a fitted response surface
of a fitted model in problems with a linear predictor. Many modeling paradigms that can be fit with base
R or contributed packages fit into this framework, including methods for linear, multivariate linear, and
generalized linear models fit by the standard lm and glm functions and by the svyglm function in the survey

package [Lumley, 2004]; linear models fit by generalized least squares using the gls function in the nlme

package [Pinheiro et al., 2016]; multinomial regression models fit by multinom in the nnet package [Venables
and Ripley, 2002]; ordinal regression models using polr from the MASS package [Venables and Ripley, 2002]
and clm and clm2 from the ordinal package [Christensen, 2015]; linear and generalized linear mixed models
using the lme function in the nlme package [Pinheiro et al., 2016] and the lmer and glmer functions in the
lme4 package [Bates et al., 2015]; and latent class models fit by poLCA in the poLCA package [Linzer and
Lewis, 2011]. This is hardly an exhaustive list of fitting methods that are based on a linear predictor, and
we have been asked from time to time to write functions to use effects with this other fittig methods.

The default Effect.default may work with some modeling functions, as would objects of the class gls
that we describe below in Section 1. This will will work if your function recognizes the defaults for the
arguments in the sources list described in Section 1. If the defaults don’t work, you will need to create your
own Effect method or call Effect.default with your own value of sources.

The effect package has five functions that create the information needed for drawing effects plots,
Effect, allEffects, effect and predictorEffect and predictorEffects. To add new modeling to the
package only Effect needs to be written; the package will take care of all the other functions.

1 Generalized Least Squares

The gls function in the nlme package [Pinheiro et al., 2016] fits linear models via generalized least squares.
A call to gls creates an object of class gls. The following function will allow usage of such objects with the
effects package.

R> Effect.gls <- function(focal.predictors, mod, ...){

+ args <- list(

+ type = "glm",

+ call = mod$call,

+ formula = formula(mod),

+ family = family(mod),

+ link = NULL,

+ coefficients = coef(mod),

+ vcov = as.matrix(vcov(mod)))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

This function consists of a call the the Effect.default function. The argument sources to that function
contains the information needed is a list of up to five arguments:

type The effects package has three basic modeling functions: type = "glm", the default, is used for
functions with a univariate response and a linear predictor and possibly a link function. This class
includes linear models, generalized linear models, robust regression, generalized least squares fitting,

1



linear and generalized linear mixed effects models and many others. The other types are type =

"multinom" for multinomial log-linear models as fit by the multinom function in nnet and similar, and
type = "polr" for ordinal regression models, as in the polr function in the MASS package. Examples
of using these types are given later.

call Effects uses the call to harvest additional arguments that it needs such as data, subset and family.
These are needed to compute fitted value, and to interpret the terms in the formula for the linear
predictor. The default is mod$call for S3 objects and mod@call for S4 objects.

formula In most cases the formula for the linear predictor is returned by formula(mod), the default, but if
this is not the case then the the value of this argument should be the value of the formula.

family and link GLM-like models include a family specifying both an error distrubtion and a link function.
If the call family(mod) returns a family, you do not need to specify either of these values. The betareg
function, on the other hand, fixes the error distribution as a Beta distribution, but it does include a
link function using a link arguement. In this case, you must specify the link function; see the betareg

example in Section 4 below. If you have a family, but it is not returned by family(mod), use the
family argument to specify it.

coefficients In many cases the coefficient estimates are returned by coef(mod), the default, but if this
is not the case then the the value of this argument should be the estimates of the coefficients in the
linear predictor.

vcov In many cases the estimated covariance matrix of the coefficient estimates is returned by vcov(mod),
the default, but if this is not the case then the the value of this argument should be the estimates of
the estimated covariance matrix of the coefficient estimates in the linear predictor.

Since the values of all the arguments in sources are default values for the gls function, there is no need to
have written the Default.gls method, as the default method would work.

2 Mixed Effects with the lmer fron the lme4 package

The lme4 package [Bates et al., 2015] fits linear and generalized linear mixed effects models with the lmer

and glmer functions, respectively. The same Effect function can be used for both types of models.

R> Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){

+ if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){

+ KR <- FALSE

+ warning("pbkrtest is not available, KR set to FALSE")}

+ fam <- family(mod)

+ args <- list(

+ call = mod@call,

+ coefficients = lme4::fixef(mod),

+ vcov = if (fam == "gaussian" && fam$link == "identity" && KR)

+ as.matrix(pbkrtest::vcovAdj(mod)) else as.matrix(vcov(mod)))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

This method is somewhat more complicated because it adds an additional argument to Effect to choose
the method of estimating the sample covariance matrix. If KR=TRUE, the vovAdj function in the pbkrtest

package is used to compute the sample covariance matrix. Because this function is (painfully) slow, the
default is KR=FALSE. Because lmer is an S4 object (tested using the isS4 function), the default for call

is mod@call, and this argument would have been set authomatically had we not included it in the above
fucntion. The coefficient for an object created by a call to lmer or glimer are not returned by coef(mod),
so the value of coefficients is the value returned by lme4::fixef(mod). The vcov estimate contains its
estimated variance covariance matrix of the fixed effects.

2



The formula for a mixed-effects model in the lme4 package specifies both the linear predictor in the mean
function and the linear predictor(s) in the variance functions in terms with parentheses and and vertical bars
such as (1 + age | subject). The effects code will automatically remove any terms like these.

3 Robust Linear Mixed Models

The robustlmm package [Koller, 2016] fits linear mixed models with a robust estimation method. As iits
rlmer function closely parallels the lmer package, an object created by rlmer is easily used with effects:

R> Effect.rlmerMod <- function(focal.predictors, mod, ...){

+ args <- list(

+ coefficients = lme4::fixef(mod))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

4 Beta Regression

The betareg function in the betareg package [Grün et al., 2012] fits regressions with a link function but
with Beta distributed errors.

R> Effect.betareg <- function(focal.predictors, mod, ...){

+ coef <- mod$coefficients$mean

+ vco <- vcov(mod)[1:length(coef), 1:length(coef)]

+ args <- list(

+ call = mod$call,

+ formula = formula(gy_logit),

+ coefficients = coef,

+ link = mod$link$mean,

+ vcov = vco)

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

The Beta distributions require estimation of the parameters of the Beta, but these are not used by effects.
The relevant coefficients and covariance matrix are extracted by the first two lines of the function. This
method has a link function specified by the link argument, but no family, so the link argument is added
to sources.c

5 Ordinal Models

Proportional odds logit and probit regression models fit with the polr function in the MASS package [Venables
and Ripley, 2002] are supported in the effects package. The ordinal package, [Christensen, 2015] contains
three functions that are very similar to polr. The clm and clm2 functions allow more link functions and a
number of other generalizations. The clmm function allows including random effects.

5.1 clm

R> Effect.clm <- function(focal.predictors, mod, ...){

+ if (requireNamespace("MASS", quietly=TRUE)){

+ polr <- MASS::polr}

+ if(mod$link != "logit") stop("Effects only supports the logit link")

+ if(mod$threshold != "flexible") stop("Effects only supports the flexible threshold")

+ if(is.null(mod$Hessian)){

+ message("\nRe-fitting to get Hessian\n")

+ mod <- update(mod, Hess=TRUE)}

3



+ numTheta <- length(mod$Theta)

+ numBeta <- length(mod$beta)

+ or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta))

+ args <- list(

+ type = "polr",

+ coefficients = mod$beta,

+ vcov = as.matrix(vcov(mod)[or, or]))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

This function first checks that the MASS package is available. Since the clm function allows suppressing the
computation of the Hessian, the function checks and computes it if needed to get the estimated covariance
matix. The clm function orders the parameters in the order (threshold parameters, linear predictor param-
eters), so the next few lines identify the elements of vcov that are needed by Effects. Since the polr

function does not allow thresholds other thab flexible, we don’t allow them either. Simiarly, we have only
implemented effects for the default logit link

5.2 clm2

R> Effect.clm2 <- function(focal.predictors, mod, ...){

+ if (requireNamespace("MASS", quietly=TRUE)){

+ polr <- MASS::polr}

+ if(is.null(mod$Hessian)){

+ message("\nRe-fitting to get Hessian\n")

+ mod <- update(mod, Hess=TRUE)}

+ if(mod$link != "logistic") stop("Effects only supports the logit link")

+ if(mod$threshold != "flexible") stop("Effects only supports the flexible threshold")

+ numTheta <- length(mod$Theta)

+ numBeta <- length(mod$beta)

+ or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta))

+ args <- list(

+ type = "polr",

+ formula = mod$call$location,

+ coefficients = mod$beta,

+ vcov = as.matrix(vcov(mod)[or, or]))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

The syntax for clm2 is not the same as clm, so a separate method is required

5.3 clmm

This function allows for random effects in an ordinal model.

R> Effect.clmm <- function(focal.predictors, mod, ...){

+ if (requireNamespace("MASS", quietly=TRUE)){

+ polr <- MASS::polr}

+ if(is.null(mod$Hessian)){

+ message("\nRe-fitting to get Hessian\n")

+ mod <- update(mod, Hess=TRUE)}

+ if(mod$link != "logit") stop("Only the logistic link is supported by Effects")

+ if(mod$threshold != "flexible") stop("Only threshold='flexible supported by Effects")

+ numTheta <- length(mod$Theta)

+ numBeta <- length(mod$beta)

+ or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta))

4



+ skip <- length(unique(model.frame(mod)[,1])) - 1

+ vcov <- matrix(NA, nrow=numBeta + skip, ncol=numBeta + skip)

+ sel <- rownames(vcov(mod)) %in% names(mod$beta)

+ vcov[1:numBeta, 1:numBeta] <- vcov(mod)[sel, sel]

+ args <- list(

+ type = "polr",

+ formula = fixFormula(as.formula(mod$formula)),

+ coefficients = mod$beta,

+ vcov = as.matrix(vcov))

+ Effect.default(focal.predictors, mod, ..., sources=args)

+ }

Complications here come from getting the right elements of vcov(mod) corresponding to the fixed effects.

6 Multinomial Models

6.1 multinom

6.2 Latent Class Models

References

D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using lme4. Journal of
Statistical Software, 67(1):1–48, 2015.

R. H. B. Christensen. ordinal—Regression Models for Ordinal Data, 2015. URL http://www.cran.r-

project.org/package=ordinal/. R package version 2015.6-28.

B. Grün, I. Kosmidis, and A. Zeileis. Extended beta regression in R: Shaken, stirred, mixed, and partitioned.
Journal of Statistical Software, 48(11):1–25, 2012. URL http://www.jstatsoft.org/v48/i11/.

M. Koller. robustlmm: An R package for robust estimation of linear mixed-effects models. Journal of
Statistical Software, 75(6):1–24, 2016. doi: 10.18637/jss.v075.i06.

D. A. Linzer and J. B. Lewis. poLCA: An˚package for polytomous variable latent class analysis. Journal of
Statistical Software, 42(10):1–29, 2011.

T. Lumley. Analysis of complex survey samples. Journal of Statistical Software, 9(1):1–19, 2004. R package
version 2.2.

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2016. URL http://CRAN.R-project.org/package=nlme. R package version 3.1-127.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th edition,
2002.

5


