The Future Sustainability of the Canada Pension Plan and Old Age Security Program

Private Pensions and Income Security in Old Age: An Uncertain Future

Where are we now? How secure is the future?

Presentation to the SEDAP Conference (Social and Economic Dimensions of an Aging Population) at McMaster University, Hamilton

16 November 2006
Presentation

1. Canadian Income Retirement System
2. Canadian and Global Aging
3. CPP Steady-state Funding and OAS Funding
4. Peer Review Process
5. Stochastic Analysis: a tool to measure the volatility and the uncertainty
Canadian Retirement Security

Canadian retirement system with mixed funding approaches is well recognized in the world for its capacity to adapt rapidly to changing conditions.

- Full funding (RPP/RRSP)
- Partial funding (CPP/QPP)
- Pay-as-you-go funding (OAS/GIS)

The Canadian retirement system could be viewed as about 40% to 45% funded.
Presentation

1. Canadian Income Retirement System
2. **Canadian and Global Aging**
3. CPP Steady-state Funding and OAS Funding
4. Peer Review Process
5. Stochastic Analysis: a tool to measure the volatility and the uncertainty
Purpose of the CPP Triennial Actuarial Report

• 21st Actuarial Report Tabled by the Minister of Finance on 8 December 2004

• Inform on the current and projected future financial status of the Canada Pension Plan

• Calculate the steady-state contribution rate
Canadian Aging

Population 65 and over

(in millions) Population 65 and over (% of population)

Increase of 150% From 2005 to 2050

Increase of 250% for 80+

Office of the Chief Actuary Bureau de l’actuaire en chef
Global Aging

Projected number of years needed to go from 12% to 24% of 65 and over as a % the total population

- Japan: 25 years
- QPP: 30 years
- Canada: 40 years
- Germany: 60 years
- France: 65 years
- United Kingdom: 65 years

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Office of the Chief Actuary Bureau de l’actuaire en chef
Working Age Population (ages 20-60) (indexed 2000=100)

Source: UN World Population Prospects

Office of the Chief Actuary Bureau de l’actuaire en chef
Presentation

1. Canadian Income Retirement System
2. Canadian and Global Aging
3. **CPP Steady-state Funding and OAS Funding**
4. Peer Review Process
5. Stochastic Analysis: a tool to measure the volatility and the uncertainty
How do we position for the aging of the Canadian population? : CPP Steady-state Funding

Effect of the 1998 Amendments

• Increase the contribution rate by 65% over 6 years (1997-2003) and keep the same rate thereafter

• Moderate the future growth of benefits by 10% on a long-term basis (in 2050).

• Creation of the CPP Investment Board to diversify the CPP reserve fund and increase investment returns (www.cppib.ca)
CPP Steady-State Funding

Asset/Expenditure Ratio

9.9% Legislated contribution rate

9.8% Steady-state rate

In 2020, CPP/QPP assets are projected to be equal to 17% of the GDP.
CPP Steady-State Funding

• If the steady-state rate is **higher** than the legislated contribution rate AND if finance ministers cannot reach agreement on a solution, then:

 – Contribution rate increased by \(\frac{1}{2} \) of excess over three years, subject to maximum increase of 0.2% per year
 – Benefits frozen
 – At end of three years, next review performed to determine financial status of Plan.
Between 2010 and 2030, the ratio of expenditures to GDP increases from 2.4% to 3.2%, driven largely by the retirement of the babyboomers.

$28 billion in 2004; $37 billion in 2010; $110 billion in 2030

How do we position for the aging of the Canadian population?
Presentation

1. Canadian Income Retirement System
2. Canadian and Global Aging
3. CPP Steady-state Funding and OAS Funding
4. Peer Review Process
5. Stochastic Analysis: a tool to measure the volatility and the uncertainty
Independent Peer Review Process

• Auditor General and Selection Process
• Overseeing of the Peer Review by the UK Government Actuary’s Department
• The Independent Review Panel confirmed:
 – That actuarial standards of practice were met;
 – That assumptions were reasonable;
 – That the report fairly communicates the results;
 – The actuarial conclusions reached by the Chief Actuary about the soundness of the CPP.

 • and made a series of recommendations.

March 2005
Presentation

1. Canadian Income Retirement System
2. Canadian and Global Aging
3. CPP Steady-state Funding and OAS Funding
4. Peer Review Process
5. Stochastic Analysis: a tool to measure the volatility and the uncertainty
• Sensitivity Analysis
 – Vary values of 9 key assumptions individually
 – Two tests performed with respect to each assumption
 • High cost: alternative assumption increases steady-state contribution rate
 • Low cost: alternative assumption decreases steady-state contribution rate

• Stochastic Analysis
 – Using historical data, stochastically determine the probability that the actual value for selected assumptions will fall outside the range of potential outcomes determined by the high- and low-cost scenarios
Historical Fertility Rate

Geometric Mean (1941-2002) = 2.5
\(\sigma = 0.9 \)

Geometric Mean (1977-2002) = 1.6
\(\sigma = 0.07 \)
Fertility Rates

Stochastic Analysis
20-year periods

Historical period used: 1977-2002

\[\mu = 1.62 \]
\[\sigma = 0.02 \]

High-Cost Scenario
at 1.3 \(\rightarrow \) 10.1%

Low-Cost Scenario
at 1.9 \(\rightarrow \) 9.5%

Office of the Chief Actuary
Bureau de l’actuaire en chef
Historical Real Wages Differential

Geometric Mean (1924-2003) = 1.4%
σ = 2.3%
Real Wage Differential

Historical period used: 1924-2003

Stochastic Analysis
20-year periods

High-Cost Scenario: 10.3%
Low-Cost Scenario: 9.2%

\[\mu = 1.4\% \]
\[\sigma = 0.5\% \]
Historical Canadian Equity Return (1938-2005)

Geometric Mean (1938-2005) = 6.4%
σ = 16.1%
Real Rates of Return

Stochastic Analysis 20-year periods

CPP Reference Portfolio
(40% Foreign Equities, 25% Canadian Equities, 25% Nominal Bonds, 10% Real Return Bonds)

Historical period used: 1938-2005

\[\mu = 5.8\% \]
\[\sigma = 2.7\% \]

High-Cost Scenario: 10.3%
Low-Cost Scenario: 9.3%

Office of the Chief Actuary Bureau de l’actuaire en chef
CPP Actuarial Report as at 31 December 2006

• How uncertain is the certainty? How certain is the uncertainty?

• Stochastic analysis
 – Determine confidence intervals for assumptions such as fertility, migration, mortality, inflation, wages increases, investment returns

• Uncertainty of results
 – a new section will be added explaining the uncertainty involved in estimating future contribution rates as per the peer reviewers’ recommendation.
Private Pensions and Income Security in Old Age: An Uncertain Future

Presentation to the SEDAP Conference (Social and Economic Dimensions of an Aging Population) at McMaster University, Hamilton

Thank you

16 November 2006