Ordinary Least Squares Bias and Bias Corrections for \emph{iid} Samples

Lonnie Magee

SEDAP Research Paper No. 207
Ordinary Least Squares Bias and Bias Corrections for iid Samples

Lonnie Magee

SEDAP Research Paper No. 207
Abstract:
The $O(n^{-1})$ bias and $O(n^{-2})$ MSE of OLS are derived for iid samples. An approach is suggested for handling nonexistent finite sample moments. Bias corrections based on plug-in, weighting, jackknife and pairs bootstrap methods are equal to $O_p(n^{-3/2})$. Sometimes they are effective at lowering bias and MSE, but not always. In simulations, the bootstrap correction removes more bias than the others, but has a higher MSE. A hypothesis test is given for the presence of this bias. The techniques are applied to survey data on food expenditure, and the estimated bias is small and statistically insignificant.

Key words: OLS bias; finite sample moments; Nagar approximation; bias correction; pairs bootstrap

JEL Classification: C13, C29, C49

Résumé
Le biais $O(n^{-1})$ et $O(n^{-2})$ d’erreur quadratique moyenne des moindres carrés ordinaires est dérivé sous l’hypothèse d’un échantillons indépendants et distribués de façon identique. On propose une approche qui permet d’adresser l’inexistence de moments en échantillons finis. Les corrections de biais fondées sur les méthodes d’insertion, de pondération, de projection (jackknife) et de bootstrap sont égales à $O_p(n^{-3/2})$. Ces méthodes sont parfois capables de réduire les biais d’estimation et l’erreur quadratique moyenne. Dans les simulations, la correction par la méthode du bootstrap élimine davantage les biais d’estimation que les autres méthodes, mais engendre une erreur quadratique moyenne plus élevée. Un test d’hypothèse de l’existence de ce biais est développé. Ces techniques sont appliquées à des données de sondage sur les dépenses de consommation alimentaire; le biais d’estimation est petit et n’est pas statistiquement significatif.

* I would like to thank Jeff Wooldridge and Jeff Racine for helpful advice, and Tom Crossley and Yuqian Lu for supplying the food expenditure data. This research was supported by the Social and Economic Dimensions of an Aging Population II (SEDAP) Research Program — a SSHRC MCRI grant with Byron Spencer the Principal Investigator.
1 Introduction

This paper examines the $O(n^{-1})$ bias and $O(n^{-2})$, mean squared error (MSE), of the most common estimator, OLS, in one of the most common statistical frameworks, iid sampling. This bias is different from the more familiar $O(1)$ omitted-variables or endogenous-regressor bias. It is caused by correlations between the linear regression disturbances and nonlinear functions of the regressor variables x that arise from misspecification of the conditional mean $E(y|x)$. Section 5.1 contains a simple illustration.

The parameter of interest is $\beta = E(xx')^{-1}E(xy)$. $\hat{\beta}$ minimizes the mean square specification error $E(x'^{\prime}\beta^{*} - E(y|x))^{2}$ (Goldberger ’1991), Poirier (1995, p.69). It is a weighted average of the gradients $\partial E(y|x)/\partial x$ (Peracchi ’2001, p.46). Angrist et al. (2006, p.540) state “OLS provides a meaningful and well-understood summary statistic for conditional expectations under almost all circumstances.”

OLS may not have finite sample moments even with finite population moment assumptions (e.g. Schmidt (1976, pp.93-96)). iid sampling often leaves a non-zero probability of a singular $X^{\prime}X$ matrix. In this paper, restricted OLS is used when $X^{\prime}X$ is singular or nearly so. The resulting modified OLS estimator has finite-sample moments while retaining the same $O_p(n^{-3/2})$ expansion as the un-modified OLS. As a result, Nagar (1959) approximations are valid for the modified estimator.

Section 2 presents the model, the $O(n^{-1})$, bias, and the finite-moment modification. In Section 3, bias corrections are suggested, and MSE approximations are given. The effect of bias correction on the MSE is studied for special cases. A procedure is suggested for testing the null hypothesis that the $O(n^{-1})$, bias is zero in Section 4. Section 5 contains examples and numerical evaluations. Section 6 illustrates these bias corrections and tests with an application to data on food consumption used by Crossley and li n (2004). Remarks are collected in Section 7, and Section 8 summarizes. Proofs and other details are in the Appendix.

2 OLS Bias

2.1 Notation and Assumptions

y is a scalar random variable and x is a K-element random vector. $E(xx') - A$ is nonsingular. Let

$$\beta = A^{-1}E(xy),$$ \hfill (1)

y, x and β are related as

$$y = x^{\prime}\beta + \nu$$ \hfill (2)

The disturbance ν satisfies the unconditional moment restriction $E\nu = 0$ due to (1), but the conditional mean of ν is nonzero.

$$E(\nu|x) - E(y|x) - x^{\prime}\beta \neq 0$$ \hfill (3)
The data, \((y_1, x_1), (y_2, x_2), \ldots, (y_n, x_n)\) are iid draws of \((x, y)\), generated according to an unknown population distribution. The OLS estimator is

\[
\hat{b} = \left(\sum_i x_i x_i' \right)^{-1} \sum_i x_i y_i = \hat{A}^{-1} n^{-1} \sum_i x_i y_i,
\]

where \(\hat{A} = n^{-1} \sum_i x_i x_i' \), \(\hat{b}\) is a consistent estimator of \(\beta\) (White (1984, p.17)). In finite samples, \(\hat{A}\) may be singular and \(\hat{b}\) may be undefined.

2.2 Existence of Finite-Sample Mean and Variance: Modified OLS

Let \(x \sim d \mid \) where \(\text{Prob}(d = 1) = p\) and \(\text{Prob}(d = 0) = 1 - p\). \(\hat{A}\) is singular when the sampled \(d_i\)'s all equal 0 or all equal 1. This occurs with probability \(p^n + (1 - p)^n\), which is strictly positive for finite \(n\) and any \(p \in (0, 1]\). In practice, the `reg` command in Stata for example, a singular \(\hat{A}\) often is managed by deleting regressors. Similarly, define a modified OLS estimator as

\[
b_M = \begin{cases}
 b_R & \text{if } \lambda_1(\hat{A}) < \tau \\
 b & \text{otherwise}
\end{cases}
\]

where \(0 < \tau < \lambda_1(\hat{A})\). \(\lambda_1(\hat{A})\) is the smallest characteristic root of \(A\), and \(b_R\) is any \(K \times 1\) vector having a finite mean and variance given \(\lambda_1(\hat{A}) < \tau\). In the dummy variable regressor example given above, \(b_R\) might be \(b_R = [1, 0, \ldots, 0]'\) if \(y\) has a finite mean and variance; or even \(b_R = 0\). \(\tau\) must be small enough to assure \(\tau < \lambda_1(\hat{A})\). For example, set \(\tau\) just large enough to account for numerical computing precision. This truncation rule is similar to that suggested for bootstrap MSF estimation by Lin and Singh (1992, p.382). Their rule uses the determinant instead of \(\lambda_1\).

Theorem 1(a) describes assumptions sufficient for the existence of \(b_M\)'s finite-sample mean and variance. Sufficient conditions for \(b_M - b - \sigma_p(n^{-1/2})\) are given in Theorem 1(b).

Theorem 1

(a) If the moments \(E(x^2 y^2)\) are finite, then \(E(b_M)\), and \(\text{Var}(b_M)\) are finite.

(b) If the moments \(E(x^2)\) are finite, and \(A\) has a distinct minimum characteristic root \(\lambda_1(A)\), then \(b_M - b + o_p(n^{-1/2})\).

Theorem 1(a) implies that the \(O(n^{-1})\) bias and \(O(n^{-2})\) MSE approximations for \(b_M\) are valid in Sargan's (1974) sense. Theorem 1(b) implies that these approximations are the same as for \(b_M\) as for \(b\).

2.3 OLS Expansion

To reduce notation, let \(H\) be a matrix satisfying \(HH' = A^{-1}\) and \(H'AH = I\). Then

\[
y = x' \hat{\beta} + \epsilon.
\]

\[
y = x'(H^{-1}\hat{\beta}) + \epsilon.
\]
where $z - H'x$ and $Ez\epsilon' - I$. The OLS estimator of $H^{-1}\beta$ is

$$
H^{-1}b = \left(\sum_{i} z_i z_i'\right)^{-1} \sum_{i} z_i y_i - H^{-1}\beta + (n^{-1} \sum_{i} z_i z_i')^{-1} \left(n^{-1} \sum_{i} z_i v_i\right)
$$

(6)

Let

$$
\Delta_{zz} = n^{-1} \sum_{i} z_i z_i' - I \quad \text{and} \quad \Delta_{zt} = n^{-1} \sum_{i} z_i v_i
$$

Δ_{zz} and Δ_{zt} are the $O_p(n^{-1/2})$ differences between the sample moments appearing in (6) and their population counterparts. Substituting in (6), and expanding gives

$$
H^{-1}b - H^{-1}\beta = (I + \Delta_{zz})^{-1} \Delta_{zt}
$$

$$
= \Delta_{zt} - \Delta_{zz} \Delta_{zt} + \Delta_{zz}^2 \Delta_{zt} + O_p(n^{-2})
$$

(7)

When appearing in an expectation, a term such as z_i represents the i^{th} random variable z rather than its realized value. The expectations of the terms in (7) are

$$
E\Delta_{zt} = E n^{-1} \sum_{i} z_i v_i = \nu' z v = 0
$$

$$
E\Delta_{zz}, \Delta_{zt} = E n^{-2} \sum_{i,j} (z_i z_j' - I)(z_i v_j)
$$

$$
- n^{-2} E \sum_{i} z_i (z_i' z_i) v_i - n^{-1} E \sum_{i} z_i v_i
$$

$$
- n^{-1} E (z' z) z t - \gamma
$$

$$
E\Delta_{zz}^2 \Delta_{zt} = E n^{-2} \sum_{i,j,k} (z_i z_j' - I)(z_j z_k' - I)(z_k v_k)
$$

$$
- n^{-2} E (z' z)^2 z t - \gamma + O(n^{-2})
$$

where $\gamma = E(z' z) z v$.

2.4 OLS Bias to $O(n^{-1})$

The $O(n^{-1})$ bias of $H^{-1}b$ is then

$$
E(H^{-1}b) - H^{-1}\beta = -n^{-1} \gamma + O(n^{-2})
$$

(8)

In the original parametrization (1) to (4), the result is

$$
E(b) - \beta = -n^{-1} A^{-1} \gamma + O(n^{-2})
$$

(9)

where $\gamma = E(x' A^{-1} x) z v$.

3
3 Bias Corrections and $O(n^{-2})$ Mean Squared Errors

3.1 Bias Corrections

A consistent estimator of n times the $O(n^{-1})$ bias term from (9) is

$$ \hat{b}_n = -n \hat{A}^{-1} (np_{ii}) x_i e_i $$\hspace{1cm}(10)$$

which uses

$$ \hat{A}^{-1} = A^{-1} + o_p(1), $$

$$ np_{ii} = x'_i A^{-1} x_i + o_p(1), $$

$$ v_i = e_i + o_p(1), $$

where $p_{ii} = x'_i (\sum_i x_i x'_i)^{-1} x_i - n^{-1} x'_i \hat{A}^{-1} x_i$ and $e_i = y_i - x'_i b$. A plug-in bias-corrected estimator 'BC' is then

$$ b_{c1,M} = \left\{ \begin{array}{ll}
 b_R & \text{if } \lambda_1(\hat{A}) < \tau \\
 b_{w1} & \text{otherwise},
\end{array} \right.$$\hspace{1cm}(11)$$

Another BC is the pairs bootstrap correction

$$ b_{boot,M} = \left\{ \begin{array}{ll}
 b_R & \text{if } \lambda_1(\hat{A}) < \tau \\
 b_{boot} & \text{otherwise},
\end{array} \right.$$\hspace{1cm}(12)$$

$$ b_{boot} = 2b - b_R $$

$$ b_R = R^{-1} \sum_{\ell=1}^R b_{B\ell,M} $$

$$ b_{B\ell,M} = \left\{ \begin{array}{ll}
 b & \text{if } \lambda_1(\hat{A}_\ell) < \tau \\
 b_R & \text{otherwise},
\end{array} \right.$$\hspace{1cm}(11)$$

$$ b_{B\ell} = \hat{A}_\ell^{-1} n^{-1} \sum_i x_{i\ell} y_{i\ell}, $$

$$ \hat{A}_\ell = n^{-1} \sum_i x_{i\ell} x'_{i\ell} $$

$b_{c1,M}$ and $b_{boot,M}$ have been modified in the same way as was b_M. Each $b_{B\ell,M}$ is constructed from a pairs bootstrap sample, indexed by ℓ. The i^{th} observation of the ℓ^{th} pairs bootstrap sample, $(x_{i\ell}, y_{i\ell})$, is sampled with replacement from the original data. The $b_{B\ell,M}$'s are modified using the same truncation rule as in (5), applied to \hat{A}_ℓ.

Theorem 2 is the counterpart to Theorem 1 for $b_{c1,M}$ and $b_{boot,M}$.
Theorem 2

(a) If the moments $E(x^2 y^2)$ are finite, then $E(b_{c1,M})$ and $\text{Var}(b_{c1,M})$ are finite. If the moments $E(x^2 y^2)$ are finite, then $E(b_{\text{boot},M})$ and $\text{Var}(b_{\text{boot},M})$ are finite.

(b) If the moments $E(x^2)$ are finite, and $\lambda_{\min}(A)$ is a distinct minimum characteristic root, then $b_{c1,M} - b_{c2} + \varphi_p(n^{-3/2})$ and $b_{\text{boot},M} - b_{\text{boot}} + \varphi_p(n^{-3/2})$.

Three other BCs that are the same to $O_p(n^{-3/2})$ are

\begin{align}
b_{c2} &= \left(\sum_i x_i x_i' (1 + p_{ii})^{-1}\right) \left(\sum_i x_i y_i (1 + p_{ii})\right) \\
b_{c3} &= \left(\sum_i x_i x_i' (1 - p_{ii})^{-1}\right) \left(\sum_i x_i y_i (1 - p_{ii})^{-1}\right) \\
b_{\text{jack}} &= \hat{h} + (n - 1) n^{-1} \left(\sum_i x_i x_i' \right)^{-1} \left(\sum_i (1 - p_{ii})^{-1} x_i e_i\right)
\end{align}

b_{c2} and b_{c3} are weighted least squares, and b_{jack} is the standard or balanced jackknife estimator (Hinkley (1977, equation 2.4)).

3.2 $O_p(n^{-3/2})$ expansions

The expansion shared by the five BCs defined above is given in Theorem 3.

Theorem 3

\begin{align}
H^{-1} b_{r} - H^{-1} \hat{\beta} &= \Delta_{zz'} - \Delta_{zz} \Delta_{zz'} - n^{-1} \gamma_i \nonumber \\
&+ n^{-1} \Delta_{zz} \Delta_{zz'} + \varphi_p(n^{-3/2})
\end{align}

where $\Omega_{zz'} = E(z z')$, b_{r} refers to any of $b_{c1}, b_{c1,M}, b_{c2}, b_{c3},$ or b_{jack}. b_{r} includes b_{boot} and $b_{\text{boot},M}$ if R^{-1} in (12) is $\varphi(n^{-2})$.

The condition on R reduces the bootstrap sampling error to $\varphi_p(n^{-3/2})$.

3.3 $O(n^{-2})$ Mean Squared Errors

Let $\Omega_{g(v,z)} = E(z z') g(v, z)$, where $g(v, z)$ is some scalar random variable. z_a and γ_a denote the a^{th} elements of z and γ.

5
Theorem 4

Given the assumptions in Theorems 1 and 2,

\[
\begin{align*}
(a) \quad \text{MSE}(H^{-1}b) &= -n^{-1}\Omega_{v,v} + n^{-2}\gamma'\gamma + \Omega_{z'\Omega_{z,z}z} - \Omega_{z,z} + 2\sum_{s=1}^{K} \Omega_{z,s}\gamma_s + \Omega_{z,z}\Omega_{z,z} + \Omega_{z,z}\Omega_{z,z} \\
&\quad + 2\Omega_{z,s}\gamma_s + 2\sum_{s=1}^{K} \Omega_{z,s}\gamma_s + \Omega_{z,s}\Omega_{z,s} + \Omega_{z,s}\Omega_{z,s} - 2\Omega_{z,s}\gamma_s + o(n^{-2}), \quad (17)
\end{align*}
\]

(b) \quad \text{MSE}(H^{-1}b_c) = \text{MSE}(H^{-1}b_{\text{boot}}) = n^{-1}\Omega_{v,v} + n^{-2}(\Omega_{z'\Omega_{z,z}z} + \sum_{s=1}^{K} \Omega_{z,s}\gamma_s - \Omega_{z,z}) + o(n^{-2}), \quad (18)

Letting \(b_c \) refer to \(b_{c1} \) or \(b_{\text{boot}} \), the difference between (18) and (17) is

\[
\begin{align*}
\text{MSE}(H^{-1}b_c) - \text{MSE}(H^{-1}b) &= -n^{-2}\gamma'\gamma + \gamma' \sum_{s=1}^{K} \Omega_{z,s}\gamma_s + \sum_{s=1}^{K} \Omega_{z,s}\gamma_s + \Omega_{z,s}\Omega_{z,s} + \Omega_{z,s}\Omega_{z,s} - 2\Omega_{z,s}\gamma_s + o(n^{-2}), \quad (19)
\end{align*}
\]

3.4 Special Cases

The \(\Omega \) matrices and \(\gamma' \) in (19) all are nonnegative. The minus sign on the very last term rules out a general result about the BCs reducing the \(O(n^{-2}) \) MSE. That last term can dominate the others, and the BCs can increase MSE. To gain some intuition on when the bias is large and when the BCs do not reduce MSE, two special cases are considered.

3.4.1 No misspecification or heteroskedasticity

Let \(E(v|x) = 0 \), then \(Ek = \beta \). Let \(E(v^2|x) = \sigma^2 \) for all \(x \). The terms in (19) simplify to \(\gamma = 0 \), \(\Omega_{z(v,v)} = 0 \), \(\Omega_{x,x} = \sigma^2 I \), and \(\Omega_{z^2x} = \sigma^2 \Omega_{z,z} \). (19) becomes

\[
\begin{align*}
\text{MSE}(H^{-1}b_c) - \text{MSE}(H^{-1}b) &= -n^{-2}\Omega_{z,z} + \sigma^2 \Omega_{z,z} + \sigma^2 \Omega_{z,z} - 2\sigma^2 \Omega_{z,z} + o(n^{-2}) \\
&\quad + o(n^{-2}), \quad (20)
\end{align*}
\]

Thus the BCs have no effect on the \(O(n^{-2}) \) MSE when there is no misspecification or heteroskedasticity.

3.4.2 Single regressor with misspecification and heteroskedasticity

Let \(x \) be scalar, with moments \(E(x^\omega) = \mu_\omega \), standardized so that \(\mu_1 = 0 \) and \(\mu_2 = 1 \). Then \(z = x \) and \(E(x^2) = H = 1 \). Let the conditional mean of the disturbance be \(E(v|z) = \alpha(z^\omega - \mu_{\omega+1}z) \) where \(\omega \) is a nonnegative integer. This model satisfies \(E(v) = 0 \) although \(E(v|z) \neq 0 \) unless \(\alpha = 0 \) or \(\omega = 1 \). Before specifying heteroskedasticity, note that \(E(v^2|z) \) is the sum of two components, \(E(v^2|z) \) and \(E((v-E(v|z))^2|z) \). \(E(v^2|z) \) is the square of the error in specification of the mean that already has been specified. The second component is the conditional variance of the disturbance \(\epsilon \) in the well-specified regression \(y = E(y|z) + \epsilon \). Let it be...
\[E((v - E(v|z))^{2}|z) = \gamma + \alpha(\mu_{\omega+3} - \mu_{\omega+1} \mu_4), \]

\[\sum_{\alpha=1}^{K} \Omega_{\alpha}^{2} - E(z^{3}v) - \gamma^{2} \]

\[\Omega_{\alpha} - E(z^{2}v^{2}, \gamma^{2}(\mu_{\omega+2} - 2\mu_{\omega+1} \mu_{\omega+2} + \mu_{\omega+1}^{2} + \sigma^{2}(1 + 9\mu_{2\phi+2})), \Omega_{\omega} - E(z^{4}), \mu_{4} \]

\[\sum_{\alpha=1}^{K} \Omega_{\alpha}^{2} \gamma_{\alpha} - E(z^{3}v) \gamma - \gamma^{2} \]

\[\Omega_{\alpha} \gamma_{\alpha} - E(z^{4}v^{2}, \gamma^{2}(\mu_{\omega+4} - 2\mu_{\omega+1} \mu_{\omega+5} + \mu_{\omega+1} \mu_{6}^{2} + \sigma^{2}(\mu_{4} + 9\mu_{2\phi+4})), \Omega_{\omega} - E(z^{4}), \mu_{4} \]

Applying (8), or (9), the \(L\) bias is

\[E(b) = \beta = -n^{-1} \alpha(\mu_{\omega+3} - \mu_{\omega+1} \mu_4), + O(n^{-2}) \]

Not surprisingly, the bias is larger when \(n \) is small and when the scale of the misspecification, \(\alpha \), is large.

The third factor, \(\mu_{\omega+2} - \mu_{\omega+1} \mu_4 \), depends on higher moments of \(z \) through the function

\[q_{\omega+1} = \mu_{\omega+2} - \mu_{\omega+1} \mu_4, \rho = 1, 2, \ldots \]

evaluated at \(\rho = \omega + 1 \). At one extreme, when \(z \) is symmetric and \(\omega \) is even, then \(\mu_{\omega+2} = \mu_{\omega+1} = 0 \).

Even though \(E(v|z) \) may differ from zero, it is not correlated with \(z^{3} \), so the \(O(n^{-1}) \) bias is zero. At the other extreme, when \(\omega \) is large and odd, and the probability function of \(z \) has thick enough tails, then \(\mu_{\omega+2} \gg \mu_{\omega+1} \), leading to a large bias. For example, if \(z \sim N[0, 1] \), then \(\mu_{2\omega} = \frac{(2\omega)^{2}}{2\pi^{2}} \) and

\[
\begin{align*}
\frac{\omega+1}{2(\omega+1)^{2}}(\omega-1) & - \begin{cases}
y_4 = 9 & \text{when } \omega = 3 \\
y_6 = 50 & \text{when } \omega = 5 \\
y_8 = 530 & \text{when } \omega = 7 \\
\end{cases}
\end{align*}
\]

Turning to the MSE comparison, (19), becomes

\[n^{2}(\text{MSE}(b_{c}) - \text{MSE}(b)) = \gamma^{2} + 2\gamma^{2} + 2\gamma^{2} + \Omega_{\omega} \mu_{4} + \mu_{4} \Omega_{\omega} + 2(\Omega_{\omega+1} - 2\Omega_{\omega+1}^{2}) \]

\[- (5\gamma^{2} + 2(\mu_{4} \Omega_{\omega} - 2\Omega_{\omega+1}^{2})) + O(1) \]

\[- \gamma^{2}(-5(\mu_{\omega+3} - \mu_{\omega+1} \mu_4)^{2} + 2(\mu_{\omega+4} - \mu_{\omega+2} \mu_4)) - 4\mu_{\omega+1}(\mu_{\omega+3} - \mu_{\omega+1} \mu_4) + 2\mu_{\omega+1}(\mu_{\omega+3} - \mu_{\omega+1} \mu_4) + O(1) \]

\[- \gamma^{2}(5\Omega_{\omega+1}^{2} + 2\Omega_{\omega+2}^{2} + 4\mu_{\omega+1} \mu_{\omega+3} + 2\mu_{\omega+1} \mu_4 + \sigma^{2}(\mu_{2\phi} + 4 - \mu_{2\phi+2} \mu_4) + O(1) \]

Setting \(\alpha = \theta = 0 \) recalls result (20).

Two cases can be identified from (22) in which both will increase MSE. One is the large-bias situation mentioned above. Let \(\theta = 0 \). When \(\omega \) is odd, the arguments in the \(y \) functions are even. \(y_{2\omega} \) increases dramatically with \(\rho \) when \(z \sim N[0, 1] \), as shown in (21). With thicker-than-normal-tailed \(z \) distributions.
this increase would be even more dramatic. The q_{2w+2} term has the largest argument, hence it may dominate the other terms in (22) and it has a positive sign.

A second situation in which HC increases MSE involves heteroskedasticity. Let $\phi = 0$. When $\theta > 0$ and $\phi > 0$, the last term of (22) shows that $\text{MSE}(b_c) > \text{MSE}(b)$. Again, [21] suggests that this MSE increase is large when ϕ is large and z is sufficiently thick-tailed. The weighted least squares corrections defined in [13] and [14] show that the HC’s place a higher weight on the larger-p_{ii} observations, whereas a 4LS estimator would lower the weight on those observations with this form of heteroskedasticity. Hence it is not surprising that the HC’s increases MSE in this case, particularly when there is no bias to correct.

The RMSE ratios shown in Figures 1, 3 and 6 of Section 5 show that the HC’s can reduce the MSE in other situations.

4 A Test for OLS Bias

Although many commonly-used significance tests have power against the misspecification that causes this bias, a direct test should have highest power in large samples. The following theorem enables Wald tests to be constructed from the bias estimator defined in (10).

Theorem 5

(a) If the moments $E x^6 y^4$ are finite, then

\[n^{1/2} \left(\frac{n \text{Bias}(b) - n \text{Bias}(b)}{V_{\text{Bias}}} \right) \to N(0, V_{\text{Bias}}) \]

where $n \text{Bias}(b)$ is defined in (10).

(b) A consistent estimator of V_{Bias} is

\[V_{\text{Bias}} = n^{-1} \sum \left(\dot{H}_i \dot{H}_i' \right) \]

where

\[\dot{H}_i = \dot{A}^{-1} (n p_{ii}) x_i e_i - \dot{A}^{-1} \dot{A}_{np} \dot{A}^{-1} x_i e_i - c_i - \dot{A}^{-1} x_i x'_i \dot{A}^{-1} \dot{\gamma} \]

and

\[\dot{A} = n^{-1} \sum x_i x'_i \]

\[\dot{A}_{np} = n^{-1} \sum x_i x'_i (n p_{ii}) \]

\[n p_{ii} - x'_i \dot{A}^{-1} x_i \]

\[c_{ii} - x_i (\dot{A}^{-1})_{ab} \dot{A} x_v' \]

\[\dot{\gamma} = \dot{A}^{-1} (\dot{A}^{-1})_{ab} \dot{A} x_v' \]
\[
\tilde{A}_{xt} - n^{-1} \sum_j x_i x'_j (x_i e_i) \\
\hat{\gamma} - n^{-1} \sum_i x_i (n \pi i) e_i
\]

\(x_{ia}\) and \(c_{ia}\) are the \(a^{th}\) elements of \(x_i\) and \(c_i\). \((\tilde{A}^{-1})_{at}\) and \((\hat{A}^{-1})_{at}\) are the \(a^{th}\) row and \(a^{th}\) column of \(\tilde{A}^{-1}\).

A joint test for the overall absence of ULS bias can be based on the Wald statistic

\[
W = \hat{nB_{as}(b)'(n^{-1}V_{Bias})^{-1}(n\hat{B}_{as}(b))}
\]

\(W\) is asymptotically distributed as \(\chi^2\) with \(K\) d.f. under the no-bias null hypothesis. \(t\) statistics can be obtained in the usual way to test for biases in individual elements of \(b\).

5 Examples and Simulations

In this Section the OLS bias and the performance of the BCs and specification tests are examined for some simple models. The \(X'X\) matrices cannot be singular in any of the models, so modifications like \(\{5\}\) are unnecessary.

5.1 \(x\) takes only two values

Let \(x\) be a scalar, distributed as

\[
\Pr(x - 1) = p \quad \text{and} \quad \Pr(x = a) = 1 - p
\]

where \(a > 1\) and the unknown probability \(p\) satisfies \(0 < p < 1\). The no-intercept regression model is \(y = x\beta + v\). Let \(\beta = 0\). Departing from the conditional mean zero assumption allows \(E(y|x - 1) = \mu_1 \neq 0\) and \(E(y|x = a) = \mu_a \neq 0\). Since \(\beta = 0\), then \(E(xy) = p\mu_1 + (1 - p)\mu_a = 0\), so that \(\mu_a = -p\mu_1/(1 - p)\).

5.1.1 \(x - 1\) or \(x - 2\), each with probability \(.5\) and \(n - 1\) or \(2\)

First, let \(n = 1\) and \(\mu_1 = 2\). Then

| \(x\) | \(E(y|x')\) | \(\text{Prob}(x')\) | \(x'x\) | \(E(x'y|x')\) | \(E(b|x)\) |
|-----|---------|----------------|--------|----------------|----------|
| 1 | 2 | .5 | 1 | 2 | 2 |
| 2 | -1 | .5 | 4 | -2 | -.5 |

| \(\text{unconditional expectations}\) | 2.5 | 0 | .75 |

The ULS bias arises because \(E(b)\) places equal weight on the \(x - 1\) and the \(x - 2\) values of \(y\), whereas \(\beta\) weights each \(y\) by \(E(xx')^{-1}x\). Thus \(\beta\) places a higher weight than \(E(b)\) does on the higher-leverage \(x - 2\) values of \(y\).
For an example where a BC reduces the OLS bias but increases the MSE, consider \(n - 1 \) and \(\mu_1 - \frac{\mu_1}{n} \).

| \(x' \) | \(\text{Prob}(x') \) | \(x'x \) | \(E(x'y|x') \) | \(E(b|x) \) | \(E(b_{c2}x) \) |
|-------|-----------------|------|-------------|------|---------|
| (1,1) | .25 | 2 | 4 | 2 | 2 |
| (1,2) | .25 | 5 | 0 | .143 | |
| (2,1) | .25 | 5 | 0 | .143 | |
| (2,2) | .25 | 8 | -4 | .5 | .3035 |

\(b_{c2} \), defined in (13), equals OLS when the two observed \(x \) values are equal. Although \(b_{c2} \) has a smaller unconditional bias, it has a larger bias than \(\hat{b} \) conditional on \(x \) when \(x_1 \neq x_2 \). This bias correction increases the MSE if, for example, \(y = E(y|x) \), since then the MSE is the average of the four squared conditional means.

5.1.2 \(x - 1 \) or \(x - a \)

For general values of \(n \), \(p \), and \(a \), exact means and MSEs can be computed for OLS and all of the BC estimators, including the bootstrap-based one when the bootstrap sampling error is ignored. Computational details are in Appendix A.7.

The left panel of Figure 1 plots the biases for various sample sizes. The BCs are effective unless \(n \) is very small. The right panel plots the ratio of the square root of the MSEs (RMSEs) of the BCs to the RMSE of OLS. They all are less than unity, showing that the BCs reduce the MSE. When the sample size is 25 or greater, the BCs have nearly identical means and RMSEs.

5.1.3 Controlling misspecification detectability

A fixed amount of mean misspecification is more likely to be detected by specification tests when \(n \) is larger. An OLS user might respond to evidence of misspecification by changing the regressors in order to reduce the gap between \(x'\beta \) and \(E(y|x) \). The new estimation problem probably would have a smaller OLS bias.

Suppose this detectability is not controlled for when varying coefficients in these simulations, and that the bias is higher in situation A than B, because the mean in A is “more” misspecified than it is in B. This finding may not be relevant. A researcher may be less likely to end up in situation A. She may be more likely to change model A after estimating it, if its greater misspecification is easier to detect. To address this, the non-centrality parameter \(ncp \) of a commonly-used specification test is used as an indicator of bias detectability in many of the following simulations. Parameter values are calibrated to hold this \(ncp \) fixed.

In the two-x-value model of this Section, one such test is a Wald test of the restriction \(\beta_t \) in the augmented model \(y = \beta_0 + x\beta + n^* \), allowing \(\text{Var}(\nu|x - x(\beta)) \) to depend on \(x \). Details are in Appendix A.8. In Figures 2 to 7, the conditional means \(\mu_1 \) and \(\mu_a \) are adjusted to keep the \(ncp \) fixed at \(ncp = 5 \).

5.1.4 Extreme \(x \) values

In Figure 9 the larger value taken by \(x \) (called “\(a \)” or “\(a \)”) is varied, while fixing the smaller \(x \) value at unity and adjusting \(p \) such that \(E(x) = 1.5 \) for all \(a \). \(ncp = 5 \) and \(n = 15 \). A large value of \(a \) gives a high probability
that $x - 1$ and a low probability of a large $(x - a')$ value of x.

At the largest plotted a value, $a = 34.3$, the distribution of x is extremely skewed. Then $x - 1$ with probability $p = .985$, and $x = 34.3$ with probability $1 - p = .015$. Since $n = 15$, $p' = .80$ of the samples do not contain a single large-x observation, leaving no possibility of bias correction in those samples. This explains the poor bias-removal performance of the BCs. While b_{boot} removes more bias than the other BCs, it also has the largest RMSE.

5.1.5 Heteroskedasticity

Figure 3 shows the effect of heteroskedasticity by changing σ_x^2 while fixing $\sigma_y^2 = 1$. The larger x value is 3.5, the same as in the left ends of both panels of Figure 2. The $n_c p$ is fixed at 5 and the sample size at $n = 15$. When σ_x^2 is larger, more misspecification is required to result in a given $n_c p$, causing a larger OLS bias. The biases of the BCs also increase with σ_x^2, but remain much smaller than the OLS bias. As anticipated in Section 3.4.2, however, the RMSEs of the BCs exceed the OLS RMSE when σ_x^2 is much larger than σ_y^2, although this excess RMSE reaches a maximum of roughly 2% to 4%.

5.2 x contains an intercept and a continuous variable

Let the population consist of two groups, $j = 1, 2$. The distribution of the regressor x^* and the conditional expectation function $E(y|x^*, j)$ differs across groups. Group identities are not observed, and the researcher estimates a single pooled regression. The regressor vector is $x = (1 x^*)'$, where x^* is a mixture of two random variables $x^*_{(1)}$ and $x^*_{(2)}$: $x^* = x^*_{(j)}$ with probability $p_{(j)}$, $j = 1, 2$. $x^*_{(1)}$ is distributed as exponential with a
Figure 2: Biases and RMSE ratios vs. value of larger x. Pr($x - 1') - μ, Pr(x - larger $x') - 1 - μ$. p is set such that $E(x') = 1.5$. ncp = 5, n = 15, Var(y|x - 1) = Var(y|x - larger $x') - 1$.

Figure 3: Biases and RMSE ratios vs. $σ^2$. Pr($x - 1') - .8, Pr(x - 3.5) - .2$. ncp = 5, n = 15. Var(y|x - 1) = 1.
mean of one. and \(x_{2i}^* \) is exponential with mean \(u, u > 1 \). The probability that an observation belongs to group 1 given \(x \) is

\[
\Pr(j \mid x) = \frac{p(1)e^{-x^*}}{p(1)e^{-x^*} + \frac{p(2)}{u}e^{-x^*/u}}
\]

The expectation of \(y \) conditional on \(x \) and group \(j \) is \(E(y \mid x, j) = \beta + x^*\beta_{(j)} \). Then the conditional mean of \(y \) is \(E(y \mid x) = E(y \mid x, j = 1)\Pr(j = 1 \mid x) + E(y \mid x, j = 2)\Pr(j = 2 \mid x) \). Let \(\text{Var}(y \mid x, j) = 1 \) until section 5.2.2.

The model is

\[
y_i = \beta x_i^* + \epsilon_i
\]

where \(\beta = (Exx')^{-1}Exy \).

Figure 4 shows the difference between \(E(y \mid x) \) and the linear projection \(x'\beta \) when \(p(1) = 0.8, p(2) = 0.2 \), and \(u = 3.5 \). The (scaled) density of \(x^* \) also is shown.

![Figure 4](image)

Figure 4. \(E(y \mid x) \), \(x'\beta \) and the scaled density of \(x^* \). \(p(1) = 0.8, p(2) = 0.2 \), and \(u = 3.5 \).

Unless \(a = 1 \), the population slope coefficient, \(\beta_2 \), does not equal the population average “effect” or mean population response, which is \(E(x_i^*, j) \left(\frac{\partial E(y \mid x_i^*, j)}{\partial x_i^*} \right) - p(1)\beta_{(1)} + p(2)\beta_{(2)} \). If a researcher interprets \(\beta_2 \) as the mean population response, this is an example of what Freedman (2006, p.302) succinctly refers to as “estimating the wrong parameter”. I will proceed nevertheless to examine the OLS bias in estimating \(\beta_2 \).

To calibrate the detectability of the misspecification, an ncp (details in Appendix A.9) was taken from the Wald test of \(6 - 1 \) in the augmented linear regression model

\[
y_i = \beta x_i + x_i^*\beta_{(1)} + (x_i^*)^26 + \epsilon_{i}\text{rror}
\]

Figure 5 plots the biases and RMSE ratios against the sample size. The BCs reduce the bias, but not
nearly as effectively as they did in the discrete-\(x \) example of Figure 1. \(b_{\text{boot}} \) reduces the OLS bias the most, but it also has the highest RMSE, as it did in Figure 2. The BCs increase the MSE.

![Graph showing biases and RMSE ratios with ncp fixed equal to 5.](image)

Figure 5: Biases and RMSE ratios with ncp fixed equal to 5. With probability .5, regressor \(x \) is exponential with mean \(-1\) and \(E(y|x_i') = -0 \times x_i' \); With probability .5, \(x \) is exponential with mean \(-2\) and \(E(y|x_i') = -\beta_2 \times x_i' \). \(\beta_2 \) is set such that ncp = 5. Var(\(y|x \)) = 1 for all \(x \).

5.2.1 Skewness in the Regressor

Figure 6 shows the effects of skewness in the \(x \) distribution by increasing the mean of the larger-mean (\(j - 2 \)) component of the distribution of \(x \) while adjusting the \(p_{ij} \)'s to hold the mean of \(x \) constant at 1.5 and adjusting the \(\beta_{ij} \)'s to fix the ncp at 5. With higher skewness, the source of bias is more concentrated in the right tail of \(x \), and becomes harder to detect. Higher skewness then leads to a larger OLS bias because we are holding the ncp of test '25' constant. The BCs do not remove much of the bias. Once again, \(b_{\text{boot}} \) removes the most, yet has the highest RMSE. The RMSE ratios show that the non-bootstrap BCs can provide some RMSE reduction over OLS, but this improvement fades as the skewness becomes more extreme.

5.2.2 Heteroskedasticity

Figure 7 shows the effect of increasing heteroskedasticity by increasing the error variance of the \(j - 2 \) disturbances. As in Figure 3, the relative RMSEs of the BCs grow with the heteroskedasticity, but again it appears to have an upper limit. The BCs provide some RMSE improvement unlike Figure 5, because in Figure 7 there is more skewness in \(x \). The results 'not reported' are similar when the error variance depends on \(x \) as Var(\(y|x^*, j \)) = \(\sigma^2e^{\omega x^*} \). This requires \(\omega < 1 \) for finite moments.
Figure 5: Biases and RMSE ratios vs. x, the mean of the larger-x component. With probability p, regressor x is exponential with mean 1 and $E(y|x) = \frac{1}{1-p} \times x$. With probability $1-p$, x is exponential with mean $\frac{1}{1-p}$ and $E(y|x) = \beta_r \times x$. β_r is set such that $ncp = 5$. $\text{Var}(y|x) = 1. n = 100$.

Because the E_x operation is simulated, the plots in this Section are not as smooth as in previous Sections. I used 5,000 replications and 5,000 bootstrap samples for each replication for b_{boot}.

5.3 Specification Tests

Two tests for the presence of OLS bias are examined here by simulating the model of Section 5.2. One (x^2) is a t test for the significance of b in $y_i = \alpha + x_i^* \beta(1) + (x_i^*)^2 \beta + u$, using the basic unweighted HCCME. The other ("direct") is the Wald significance test for bias in the OLS estimator of the x_i^* coefficient in $y_i = [1 x_i^*] \beta + u$, using the bias estimator and its variance given in Section 4. The x^2 test is easier to compute with standard software. While the direct test should have higher power in large samples. For this comparison, $p = .9, \mu = 8$, and $\sigma^2 - \sigma^2 = 1$.

Figure 8 shows the sizes of these two tests at the 5% nominal significance level as a function of the square root of the sample size. Although both tests over-reject, the direct test is reasonably close to its nominal size.

In the left panel of Figure 9, size-corrected powers of these tests are shown against the square root of the sample size, with the ncp fixed at 40. To facilitate power comparisons, size-corrected 5% critical values based on null-hypothesis simulations were used. At small sample sizes, the x^2 test has higher power, but the direct test has higher power for larger n.

The right panel of Figure 9 shows size-corrected powers as a function of the square root of the ncp, with the sample size fixed at $n = 1000$. With a small ncp, the x^2 test has higher power, while the direct test has
Figure 7: Biases and RMSE ratios vs. $\sigma_2^2 = \text{Var}(y|x, j - 2')$, $\text{Var}(y|x, j - 1) = 1$. With probability .75, regressor x is exponential with mean 1 and $E(y|x) = 0 \times x$: With probability .25, x is exponential with mean $\mu = \frac{1.5 - \beta_2}{1 - \beta_2}$ and $E(y|x) = \beta_2 \times x$. β_2 is set such that $n \sigma_2 = 5$. $n = 100$.

Figure 8: Rejection Rates vs. square root of sample size under null hypothesis of no OLS bias. Nominal size = 5%. $\text{Var}(y|x, j - 1) = 1$. With probability .9 (.1), the regressor x is exponential with mean 1 (.6).
higher power when \(ncp \) is larger.

![Graphs showing rejection rates vs. square root of sample size (left panel) and vs. square root of \(ncp \) (right panel). Tests are size-corrected to size = 5%. \(\text{Var}(y|x, j) = 1 \) With probability .9 (.1), the regressor \(x \) is exponential with mean 1. (6). Left panel: \(ncp = 40 \) Right panel: \(n = 1000 \).](image)

6 Empirical Example

Linear regressions similar to those reported in Crossley and Lu (2004) (CL) are reported here. Their sample contains 1158 single-person households and 915 childless-couple households. All individuals are working full time and between the ages of 25 and 55. It is taken from the 1992 and 1996 Canadian Food Expenditure Surveys and was kindly supplied by the authors. CL use linear regressions to examine differences between single and couple household spending on food and food ingredients. When combined with predictions from microeconomic models of household expenditure and other empirical results, these regressions shed light on the presence of economies of scale in home production and on the relation between household size, food expenditure, and food consumption.

Four linear regressions are estimated. The four dependent variables are (1) Food purchased from store budget share (2) Ratio of expenditure on prepared food to expenditure on ingredients (3) Ratio of expenditure on take-out fast-food to expenditure on ingredients, and (4) Ingredients budget share. The same regressors appear in each equation. The two key regressors are the couples dummy variable and the log of household income per person (\(LY \) below). The other regressors are the age of the household head, and dummies for sex of household head, education (four dummies) of the household head, as well as season (three dummies) and region (four dummies). A constant term is included.

CL check their specification by testing the significance of the square of the income variable and inspect
nonlinear regressions of these dependent variables on household income, done separately for the single and couple households. Their theoretical model predicts that the coefficient of the couple dummy will be negative in the first three regressions and positive in the fourth.

There are several reasons to expect the OLS bias to be small. First, the sample size is fairly large at \(n = 2073 \). Second, C. L. carried out the model specification tests already mentioned. Third, the results of Section 3.4.2 suggest a larger bias may be expected when there are extreme-valued regressors or high-leverage observations. In this regressor set, the highest value of the commonly-used leverage measure \(p_{ij}/(\frac{1}{n}) \), is only 3.87. The two regressors that are not dummy variables are \(LY \) and age, and age ranges from 25 to 55, while \(LY \) has less kurtosis than does a Gaussian random variable \((1.81 < 3) \).

<table>
<thead>
<tr>
<th>Table 1: Bias-Corrected Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>dependent variable</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Budget share</td>
</tr>
<tr>
<td>Food (purchased from store) budget share</td>
</tr>
<tr>
<td>Rat</td>
</tr>
<tr>
<td>Ing</td>
</tr>
<tr>
<td>Budget share</td>
</tr>
<tr>
<td>Food (purchased from store) budget share</td>
</tr>
<tr>
<td>Prep</td>
</tr>
<tr>
<td>Rat</td>
</tr>
</tbody>
</table>

Table 1 reports the estimated coefficients on the couple dummy and the \(LY \) variable. The OLS estimates differ a bit from CL because they used sampling weights and a slightly different sample. The difference between OLS and the BCs is always much smaller than the OLS standard error. The OLS variance was estimated using Stata’s “robust” option, which is Davidson and MacKinnon’s (1993, p.554) \(HC_1 \). The OLS biases indeed appear to be very small. When only \(B = 10,000 \) bootstrap replications were used, the bootstrap sampling errors were large compared to the differences between the BCs. For a larger number of bootstrap replications, the difference is for \(b_{boot} \).

Table 2 reports the test for the existence of OLS bias using the test procedure described in Section 4. The estimated biases are scaled up by multiplying by the sample size. They are not statistically significant at the 5% level. Neither are any of the four Wald statistics, which test the joint null hypothesis that none of the OLS estimates in an equation are biased. OLS bias is not a concern in this application.
Table 2: Direct Bias Tests

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>n x estimated bias</th>
<th>standard error</th>
<th>asymptotic t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food (purchased from store) budget share</td>
<td>0.200</td>
<td>0.142</td>
<td>1.41C</td>
</tr>
<tr>
<td>Ratio of prepared food to ingredients</td>
<td>0.039</td>
<td>0.191</td>
<td>0.203</td>
</tr>
<tr>
<td>Ratio of take-out fast-food to ingredients</td>
<td>-0.174</td>
<td>0.12C</td>
<td>-1.451</td>
</tr>
<tr>
<td>Ingredients budget share</td>
<td>0.151</td>
<td>0.105</td>
<td>1.387</td>
</tr>
<tr>
<td>log of household income per person 'LY'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food (purchased from store) budget share</td>
<td>1.045</td>
<td>1.366</td>
<td>0.764</td>
</tr>
<tr>
<td>Ratio of prepared food to ingredients</td>
<td>-0.756</td>
<td>0.548</td>
<td>-1.379</td>
</tr>
<tr>
<td>Ratio of take-out fast-food to ingredients</td>
<td>1.673</td>
<td>1.031</td>
<td>1.622</td>
</tr>
<tr>
<td>Ingredients budget share</td>
<td>0.913</td>
<td>1.03C</td>
<td>0.887</td>
</tr>
</tbody>
</table>

Wald statistic 'joint test' 'P-value'

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Wald statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food (purchased from store) budget share</td>
<td>10.64</td>
<td>(.8314)</td>
</tr>
<tr>
<td>Ratio of prepared food to ingredients</td>
<td>11.36</td>
<td>(.7867)</td>
</tr>
<tr>
<td>Ratio of take-out fast-food to ingredients</td>
<td>13.13</td>
<td>(.6632)</td>
</tr>
<tr>
<td>Ingredients budget share</td>
<td>10.56</td>
<td>(.8360)</td>
</tr>
</tbody>
</table>

7 Remarks

1. The bias approximation (9) is captured by the first right-hand side term of Proposition 3.2 of Rilstone et al. (1996) and the B_T term of Newey and Smith's (2004) equation (4.3). Notation is compared in the following table.

<table>
<thead>
<tr>
<th>Newey and Smith</th>
<th>Rilstone et al.</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_i</td>
<td>q_i</td>
<td>$x_i'y_i - x_i'\beta$, $x_i'v_i$</td>
</tr>
<tr>
<td>G_i</td>
<td>Vq_i</td>
<td>$-x_i'x_i'$</td>
</tr>
<tr>
<td>G</td>
<td>Vq_i</td>
<td>$-A$</td>
</tr>
<tr>
<td>ν</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Σ</td>
<td>$A^{-1}\Omega_n A^{-1}$</td>
<td>A^{-1}</td>
</tr>
<tr>
<td>H</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>V_i</td>
<td>$-x_i'x_i' - A_i'$</td>
<td>d_i</td>
</tr>
<tr>
<td>d_i</td>
<td>$-A^{-1}x_i'v_i$</td>
<td></td>
</tr>
<tr>
<td>$H_i H g_i$</td>
<td>$Q(V_i d_i')$</td>
<td>$-A^{-1} E x(x' A^{-1} x) v$</td>
</tr>
</tbody>
</table>

Rilstone et al. are concerned with nonlinear estimators, while Newey and Smith compare GMM and QFE estimation techniques in a more general setting. Newey and Smith (2004, p.233) present a bias correction for GMM estimators. The non-zero part of their result for OLS bias correction purposes is, in their notation, $-\tilde{H} \sum_{i=1}^{n} \tilde{G}_i \tilde{\psi}_i / n$, which equals $(n \text{Bias}(b))/n$ from equation (10) of the present paper.

2. If it is assumed that the N finite-population members themselves have been independently drawn from a superpopulation satisfying the above assumptions, then β is the superpopulation regression coefficient. and
the expectations in (1) are taken with respect to the distribution of \((x, y)\) in the superpopulation. Then the iid assumption is appropriate for sampling without replacement (SWOR) from this finite population. \(\beta\) differs from the census regression coefficient \(\beta_{CEN}\), which is the OLS coefficient applied to the \(N\) population members.

Now suppose the parameter of interest is \(\beta_{CEN}\) instead of \(\beta\). For the approximations in this paper to apply to OLS estimation of \(\beta_{CEN}\) with SWOR, \(\sqrt{n^2/N} \to 0\) is required. To see this, consider \(\Delta_{Zv}\) in (7). The sample is drawn from a finite population \((x_r, y_r), r = 1, \ldots, N\), where \(y_r = x'_r \beta_{CEN} + v_r\), and \(E_{p} x_r = N^{-1} \sum_{r=1}^{N} x_r v_r = 0\), where \(E_{p}\) denotes expectation under SWOR with finite \(N\). To simplify, let \(z_i = x_i\) and \(z_i\) be scalar. The leading \(O(n^{-1})\) term in the MSF expansions involves the term

\[
E_{p} \Delta_{Zv}^2 = n^{-2} \sum_{i} \left(E_{p} z_i^2 v_i^2 \right) + n^{-2} \sum_{i \neq j} E_{p} (z_i v_i \times E_{p} (z_j v_{i} z_i v_{i}));
\]

SWOR implies \(E_{p} (z_i v_i | z_i v_i) = -z_i v_i / (N - 1)\), when \(i \neq j\), therefore

\[
E_{p} \Delta_{Zv}^2 = n^{-1} E_{p} z_i^2 v_i^2 + n^{-2} \sum_{i \neq j} E_{p} (z_i v_i \times \left(\frac{-z_j v_i}{N - 1} \right));
\]

\[
- n^{-1} E_{p} z_i^2 v_i^2 - n^{-2} n(n - 1) \frac{E_{p} z^2 v^2}{N - 1} - n^{-1} E_{p} z_i^2 v_i^2 - \left(\frac{n(n - 1)}{n^2(N - 1)} \right) E_{p} z^2 v^2
\]

(26)

Under SWOR, the last term must be \(o(n^{-2})\) for this paper’s \(O(n^{-2})\) MSE approximations to remain valid. This requires \(n^2 \left(\frac{N(n - 1)}{n^2(N - 1)} \right) \to 0\) or \(n^2 / N \to 0\). A first-order approximation only would require \((n/N) \to 0\). Therefore in large samples, \(n\) may be needed for these iid-based \(O(n^{-2})\) MSE results to be applicable to SWOR-based estimation of a census regression coefficient. With iid sampling, \(E_{p} (z_j v_j z_i v_i) \to 0\) when \(i \neq j\), and the last term of (26) disappears.

3. MacKinnon and Smith (1998) consider bias corrections and their effects on the MSE for a general class of models and estimators. They assume that the distribution generating the data is known up to an unknown parameter. Their bias corrections may reduce or increase the MSE, as do the corrections in this paper. It follows that bias corrections that tackle both sources of bias, such as Newey and Smith’s (2004), share this property.

4. The weighted OLS versions of bias correction, \(b_{\infty}\) and \(b_{\infty}\) defined in (13) and (14), show that the corrections make the estimator more sensitive to high-leverage observations. As the example in Section 5.1 shows, the bias is caused by a tendency for OLS to place a lower weight on this class of observation than it receives in the corresponding population regression that defines \(\beta\). Many robust regression estimators weight in the opposite direction, and are estimating a parameter that also places a lower weight on high-leverage population members than does \(\beta\).

While on the topic of weighted least squares, note that GLS versions of WLS are not consistent estimators of \(\beta\) with conditional mean misspecification, because of correlations between \(x\) and functions of \(z\) like those that cause the OLS bias studied in this paper. Boothe and MacKinnon (1988) provide a misspecification
5. When conditional mean misspecification is concentrated at the tail values of skewed regressor variables that have thick-tailed distributions, the bias is large, and the corrections do not work well. Unfortunately this is a familiar characteristic of corrections based on asymptotic expansions. Phillips and Park (1988, p.1066) write that Edgeworth corrections “tend to work well when the error on the crude asymptotic is small (when they are least needed) and are poor when the error is large (when they are most needed)”. Some consolation may be found in their next remark, that these corrections “still provide a valuable source of information about the adequacy of asymptotic theory”.

A simple but unambitious remedy to this bias problem is to redefine the parameter of interest as $\beta_X - (\sum_i x_i x_i')^{-1} \sum_i x_i E(y|x_i)$, assuming that $\sum_i x_i x_i'$ is invertible. $x' \beta_X$ is the minimum-MSE linear approximation to $E(y|x)$ when the expectation $E_X[\{(E(y|x) - x' \beta)\}^2]$ is taken with respect to the empirical distribution of the x_i's instead of the population distribution of x. b is an unbiased estimator of β_X.

6. The finite-sample behaviour of tests and confidence intervals concerning δ have not been studied here. The shape of the distribution of y given x, $f(y|x)$, becomes relevant, not just the first two moments. Although the methods of this paper can be extended to obtain bias-corrected estimators of $\text{Var}(b)$ or $\text{Var}(b_c)$, the results of Davidson and Flachaire (2001) and Flachaire (2005) suggest that accounting for features of $f(y|x)$ by bootstrapping is more useful for improving inference than is correcting biases in the variance estimators.

Since the bias and bias corrections of this paper take place at the $O_p(n^{-1})$ level, the asymptotic validity of the standard HCCMEs designed for the $O_p(n^{-1/2})$ part of OLS still are applicable.

7. The bias results for equal-probability random sampling assumption made throughout this paper could be extended in a straightforward fashion to variable probability sampling and standard stratified sampling based on the asymptotic theory contained in Wooldridge (1999, 2001).

8. **Summary**

The $O(n^{-1})$ bias and $O(n^{-2})$ MSE of OLS is derived under iid sampling. A modification to OLS is suggested to handle the problem of nonexistent finite sample moments. Bias corrections based on plug-in, weighting, jackknife, and pairs bootstrap methods are equal to $O_p(n^{-3/2})$. Sometimes they are effective at lowering bias and MSE, but not always.

For the results to be applicable to census regression coefficient estimation in a finite population of size N using sampling without replacement, the condition $n^2/N \to 0$ is required. Similarly, in order for the sampling error of a bootstrap bias correction to belong in the remainder term of the expansion, $n^2/B \to 0$ is required, where B is the number of bootstrap replications. When n is large, these requirements on N and B may be considerable.

In the simulations, the bootstrap correction removes more bias than the others, but has a higher MSE. Exact means and MSEs are given for the single binary regressor case. Parameters are calibrated in an effort to hold constant the detectability of the misspecification across specifications.
A test is given for the $O(n^{-1})$ OLS bias. In a simulation it has a power advantage over a mean misspecification test at higher sample sizes and larger biases.

When these techniques are applied to survey data on food expenditure, the estimated bias is very small and statistically insignificant.

9 References

A Appendix

A.1 Proof of Theorem 1(a)

Let the random variable $g - 1$ if $\lambda_k(\hat{A}) < \tau$, and $g - \bar{g}$ otherwise. An a subscript denotes the ath element of a vector. Then

$$E(\hat{b}_{Ma}^2) = E(g)E(\hat{b}_{Ma}^2|g - 1) + E(1 - g)E(\hat{b}_{Ma}^2|g = 0) \leq \max(E(\hat{b}_{Ma}^2|g = 1), E(\hat{b}_{Ma}^2|g = 0))$$

since $0 \leq E(g) \leq 1$.

$E(\hat{b}_{Ma}^2|g - 1)$ is finite by construction. It is left to show that $E(\hat{b}_{Ma}^2|g = 0)$ is finite. Let

$$\hat{A} - \sum_{k=1}^{K} \lambda_k c_k c_k^T$$

where λ_k and c_k, $k=1,\ldots,K$, are the eigenvalues and eigenvectors of \hat{A}. If $g = 0$, then $\lambda_k > \tau$ for all k. Defining $u = n^{-1} \sum_i x_i y_i$, then
\[E(b_n^2 g = 0) = \nu \left(\sum_{j=1}^{K} \lambda_j^{-1} c_{ja} c_j' w \right) \left(\sum_{k=1}^{K} \lambda_k^{-1} c_{ka} c_k' w \right) \\
- E \sum_{ij} \lambda_j^{-1} \lambda_k^{-1} c_{ja} c_{ka} (c_j' w, c_k' w) \\\n< F \sum_{ij} \lambda_j^{-1} \lambda_k^{-1} |c_{ja}| |c_{ka}| |c_j' w| |c_k' w| \\\n< K^2 \max_{ij} E[\lambda_j^{-1} |\lambda_k^{-1} |c_{ja}| |c_{ka}| |c_j' w| |c_k' w|] \]

\(y - 0 \) implies \(\lambda_j^{-1} < \tau^{-1}, \) and \(c_j' c_{ja} - 1 \) implies \(c_{ja} < 1. \) Therefore

\[E(b_n^2 g = 0) < K^2 \tau^{-2} \max_{ij} E(c_j' w)^2 \]

\[\leq K^2 \tau^{-2} \max_{ij} E(w_j^2) \]

\[\max_{ij} E(w_j^2) \leq \max_{ij} E(n^{-1} \sum_{i,j} x_{ij} y_i)^2 \leq \max_{ij} E(n^{-1} E(x_i^2 y_i^2) + (1 - n^{-1}) E(x_i y_i)^2), \] where \(x_i \) refers to the \(j \)th element of the random vector \(x. \) \(E(x_i^2 y_i^2), \) (hence \(E(x_i y_i)^2)), \) is assumed finite, therefore \(E(b_n^2 g = 0) \) and \(E(b_{i,n}^2) \) are finite.

A.2 Proof of Theorem 1(b)

\[b_M = g b_R + (1-g) \bar{b} = b + g (b_R - b), \quad b + g \times O(1), \] where \(g \) is defined at the beginning of the proof of Theorem 1(a). A sufficient condition for \(b_M = h + o_p(n^{-3/2}) \) is \(g = o_p(n^{-3/2}) \). or \(\text{Prob}(\lambda_j \in A) < \tau) = 0 + o_p(n^{-3/2}). \)

The proof below is similar to the proof of Lemma 2 of Liu and Singh (1992, p.383).

Since \(\lambda_j \in A) < \tau \) can be written as \(\lambda_j \in A - \lambda_j \in A < -d \) for a positive \(d \) bounded away from zero. Let \(\text{vec}(A) \) and \(\text{vec}(\bar{A}) \) be the \(K(K-1)/2 \) element vectors of distinct elements of the symmetric matrices \(A \) and \(\bar{A} \). Let \(a_i \) and \(\bar{a}_i \) be the \(i \)th elements of \(\text{vec}(A) \) and \(\text{vec}(\bar{A}) \). Then \(\bar{a}_i - a_j = -n^{-1} \sum_{k=1}^{K} (x_{ik} x_{kt} - E x_{ik} x_{kt}) \), where \(j \) \(1, \ldots, K(K+1)/2 \) indexes \(k, \ell \) combinations. Let \(\Gamma = x_{ik} x_{kt} - E x_{ik} x_{kt} \) and \(\Gamma = \bar{a}_i - a_j - n^{-1} \sum_{k=1}^{K} (x_{ik} x_{kt} - E x_{ik} x_{kt}). \) From Baum and Katz (1965, p.113),

\[E(\Gamma^t G \Gamma) = 0 \quad \text{and} \quad E(\Gamma^t | \Gamma) > \infty \implies n^{-1} \text{Prob}(\| \Gamma \| > \epsilon) \rightarrow \infty \quad \text{for all} \quad \epsilon > 0 \]

The assumption of finite moments of order \(5 \) in \(x \) implies \(E(\Gamma^t | \Gamma) < \infty \) for \(t = \frac{5}{3} \). Therefore

\[n^{-5/3} \text{Prob}(\| \bar{a}_i - a_j \| > \epsilon) \rightarrow 0 \quad \text{for all} \quad \epsilon > 0 \]

When \(\lambda_j \in A \) is a single root, it is a smooth real-valued function of \(A \) with all derivatives (Magnus and Neudecker (1988, Theorem 7, p.158)). Choose \(\epsilon \) in (28) to be small enough that these derivatives exist over \((a_j - \epsilon, a_j + \epsilon) \) for each \(j \), and small enough that \(\epsilon < d^* \), where \(d^* = d \times \max_j |\frac{\partial \lambda_j(A)}{\partial a_j}| \). Let \(a_j^* \) be some
scalar that lies between a_i and \tilde{a}_i. Then the vector mean value theorem gives

$$\text{Prob} \left(\lambda_1(\tilde{A}^* - \tau) < 0 \right) - \text{Prob} \left(\lambda_1(A') - \lambda_1(A) < -d^* \right)$$

$$\leq \text{Prob} \left(\sum_{j=1}^{K^{(K-1)/2}} \frac{\partial \lambda_1(A')}{\partial a_i}(a_j^* - a_i^*) < -d^* \right)$$

$$\leq \text{Prob} \left(K^2 \max_i \left| \frac{\partial \lambda_1(A')}{\partial a_i} \right| \max_j |a_j^* - a_i| > d^* \right)$$

$$< \text{Prob} \left(\max_j |a_j^* - a_i| > d^* \right)$$

$$< K^2 \max_j \text{Prob} \left(|a_j^* - a_i| > d^* \right)$$

$$< o(n^{-3/2}) \quad (29)$$

where $d^* = d^*/(K^2 \max_i \left| \frac{\partial \lambda_1(A')}{\partial a_i} \right|$ is bounded away from zero. Letting ϵ in (28) equal d^*, the probabilities in (29) are $o(n^{-3/2})$. Hence

$$\text{Prob} \left(\lambda_1(\tilde{A}^* - \tau) < 0 \right) < 0 + o(n^{-3/2})$$

A.3 Proof of Theorem 2

Following the proof of Theorem 1(a) and its notation, it is sufficient for Theorem 2(a) to show that $E(b_{c1,a}^2 g - 0)$ and $E(b_{\text{boot.a}}^2 g - 0)$ are finite. For $b_{c1,a}$, since $E(b_{c1,a}^2 g - 0)$ is finite from Theorem 1(a), it is enough to show that $E((b_{c1,a} - b_a)^2 g - 0)$ is finite. Using (11) and (27),

$$b_{c1,a} - b_a = - \left(\sum_{j=1}^{K} \lambda_j^{-1} c_j \lambda_j(c_j) \right) (n^{-1} \sum_i x_i y_i)$$

$$= \nu y_i - x_i' \left(\sum_{i=1}^{K} \lambda_i^{-1} c_i \right) w$$

where $n = n^{-1} \sum_i x_i y_i$. Therefore

$$b_{c1,a} - b_a = - \left(\sum_{i=1}^{K} \lambda_i^{-1} c_j \lambda_j(c_j) \right) (n^{-1} \sum_i x_i \left(n^{-1} \lambda_i^{-1} c_i \lambda_i(c_i) \right)^2)$$

$$E(b_{c1,a} - b_a)^2$$

can be shown to be finite when $g - 0$ following steps similar to the last part of the proof of Theorem 1(a). The λ_i^{-1}'s and elements of the c_i's are bounded. The above expression has $x^2 y$ and $x^2 w$ or $x^2 y^2$ terms, so the expectation of its square is finite if the $x^2 y^2$ moments are finite.
Turning to the finiteness of \(E(b_{\text{boot},a}^2 g - 0) \), it is enough to show that \(E((\tilde{b}_{B,a})^2 g - 0) \) is finite. Writing \(\tilde{b}_{B,a} \) as

\[
\tilde{b}_{B,a} = R^{-1} \sum_{t=1}^{R} (b_0 g_0 + b_{B,a}(1 - g_0)),
\]

where \(g_0 = 1 \) if \(\lambda_1(n^{-1} \sum_i x_i^t x_i^t) < \tau \) and \(0 \leq g_0 \leq 1 \) otherwise, and noting that \(E(b_0^2 g - 0, g_0 = 1) \) is finite, then it is enough to show that \(E((b_{B,a})^2 g - 0, g_0 = 0) \) is finite. This follows from Theorem 1(a), with \(b_{B,a} \) replacing \(b_0 \), \(g_0 \) replacing \(g \), and the pairs bootstrap sampling being a special case of iid-population sampling which satisfies the finite-E\(x^2 y^2 \) moment condition. This completes the proof of Theorem 2(a).

Using the same argument as the first paragraph of the proof of Theorem 1(b), then Theorem 2(b) holds if \(\text{Prob}(\lambda_1 \tilde{A} < \tau) = 0 + o_p(n^{-3/2}) \). That result also is contained in Theorem 1(b).

A.4 Proof of Theorem 3

First, pairwise comparisons are used to show the \(O_p(n^{-3/2}) \) equivalence of all of the BCs. Then an \(O(n^{-3/2}) \) expansion for \(H^{-1}b_{c,1} \) is derived. Given their \(O(n^{-3/2}) \), equivalence, it also applies to the other BCs.

Comparing \(b_{c,1} \) and \(b_{c,2} \) from (11),

\[
b_{c,1} = (\sum_i x_i^t x_i^t)^{-1} \sum_i x_i^t y_i + p_{ii}(y_i - x_i^t b),
\]

\[
- (\sum_i x_i^t x_i^t)^{-1} \sum_i x_i^t y_i (1 + p_{ii}) - (\sum_i x_i^t x_i^t)^{-1} (\sum_i x_i^t x_i^t p_{ii}) =
\]

\[
- (\sum_i x_i^t x_i^t)^{-1} \sum_i x_i^t y_i (1 + p_{ii}) - (\sum_i x_i^t x_i^t)^{-1} (\sum_i x_i^t x_i^t p_{ii}) (b_{c,1} + O_p(n^{-1}))
\]

\[
= (\sum_i x_i^t x_i^t)^{-1} \sum_i x_i^t y_i (1 + p_{ii}) - (\sum_i x_i^t x_i^t)^{-1} (\sum_i x_i^t x_i^t p_{ii}) b_{c,1} + O_p(n^{-2}).
\]

Grouping the \(b_{c,1} \) terms, then

\[
(\sum_i x_i^t x_i^t)^{-1} (\sum_i x_i^t x_i^t (1 + p_{ii})) b_{c,1} - (\sum_i x_i^t x_i^t)^{-1} \sum_i x_i^t y_i (1 + p_{ii}) + O_p(n^{-2});
\]

\[
(\sum_i x_i^t x_i^t)^{-1} (1 + p_{ii}) b_{c,1} - \sum_i x_i^t y_i (1 + p_{ii}) + O_p(n^{-1}).
\]

Therefore

\[
b_{c,1} = (\sum_i x_i^t x_i^t (1 + p_{ii}))^{-1} \sum_i x_i^t y_i (1 + p_{ii}) + O_p(n^{-2});
\]

\[
b_{c,2} + O_p(n^{-2}).
\]

Next, compare \(b_{c,2} \) and \(b_{c,3} \). Since \(p_{ii} \) is \(O_p(n^{-1}) \), then

\[
1 + p_{ii} - (1 - p_{ii})^{-1} + O_p(n^{-2}).
\]

Therefore
\[b_{c2} = \left(\sum \limits_i x_i' \left(1 + p_{ii} \right) \right)^{-1} \sum \limits_i x_i y_i \left(1 + m_{ii} \right) \]
\[- \left(\sum \limits_i x_i' \left(1 - p_{ii} \right)^{-1} + O_p(n^{-2}) \right)^{-1} \sum \limits_i x_i y_i \left(1 - p_{ii} \right)^{-1} + O_p(n^{-2}) \]
\[= \left(\sum \limits_i x_i' \left(1 - p_{ii} \right)^{-1} + O_p(n^{-1}) \right)^{-1} \sum \limits_i x_i y_i \left(1 - p_{ii} \right)^{-1} + O_p(n^{-1}) \]
\[- \left(\sum \limits_i x_i' \left(1 - p_{ii} \right)^{-1} + O_p(n^{-2}) \right) \sum \limits_i x_i y_i \left(1 - p_{ii} \right)^{-1} + O_p(n^{-1}) \]
\[- \left(\sum \limits_i x_i' \left(1 - p_{ii} \right)^{-1} \right)^{-1} \sum \limits_i x_i y_i \left(1 - p_{ii} \right)^{-1} + O_p(n^{-2}) \]
\[- b_{c3} + O_p(n^{-2}) \]

Next, consider the standard jackknife estimator defined in (15).

\[b_{jack} = \bar{b} + \left[n - 1 \right] m^{-1} \left(\sum \limits_i x_i \right)^{-1} \sum \limits_i \left(1 - m_{ii} \right) x_i e_i \]
\[- \bar{b} + \left[1 - m^{-1} \right] \left(\sum \limits_i x_i \right)^{-1} \sum \limits_i x_i e_i \left(1 + m_{ii} + O_p(n^{-2}) \right) \]
\[= \bar{b} + \left[1 - m^{-1} \right] \left(\sum \limits_i x_i \right)^{-1} \sum \limits_i x_i e_i \left(1 + m_{ii} + O_p(n^{-2}) \right) \]
\[- \bar{b} + \left(\sum \limits_i x_i \right)^{-1} \sum \limits_i x_i m_{ii} e_i + O_p(n^{-2}) \]
\[- b_{c3} + O_p(n^{-3/2}) \]

Finally, consider \(b_{boot} \). It uses OLS estimates from the bootstrap samples,

\[b_{B_{\ell}} - \bar{b} + \left(\sum \limits_{i=1}^{n} x_{ij} x_{ij} \right)^{-1} \sum \limits_{i=1}^{n} x_{ij} e_{ij}, \quad \ell = 1, \ldots, R \]

where invertibility of \(\sum_{i=1}^{n} x_{ij} x_{ij} \) is ensured by the truncation rule used in defining \(b_{B_{\ell,M}} \). Then

\[b_{boot} - \bar{b} = \left(b - \bar{b} \right) - \bar{b} \]
\[= \bar{b} - \bar{b} \]
\[= R^{-1} \sum \limits_{\ell=1}^{R} (b - \bar{b}_{B_{\ell}}) + O_p(n^{-3/2}) \]
\[= -R^{-1} \sum \limits_{\ell=1}^{R} \left(\sum \limits_{i=1}^{n} x_{ij} x_{ij} \right)^{-1} \sum \limits_{i=1}^{n} x_{ij} e_{ij} + O_p(n^{-3/2}) \]
\[= -R^{-1} \sum \limits_{\ell=1}^{R} \left(\bar{A} + \hat{A} \right)^{-1} n^{-1} \sum \limits_{i=1}^{n} x_{ij} e_{ij} + O_p(n^{-3/2}) \]

27
\[- R^{-1} \sum_{\ell} \left(\hat{A}^{-1} - \hat{A}^{-1}(\hat{A}_{\ell} - \hat{A})\hat{A}^{-1} + o_p(n^{-1/2}) \right) n^{-1} \sum_{i} x_{ij} e_{ij} + o_p(n^{-3/2}) \]
\[= - \hat{A}^{-1} n^{-1/2} B^{-1} \sum_{\ell} \sum_{i} x_{ij} e_{ij} + \hat{A}^{-1} n^{-1/2} B^{-1} \sum_{\ell} \sum_{i} (\hat{A}_{\ell} - \hat{A})\hat{A}^{-1} x_{ij} e_{ij} \]
\[- R^{-1} n^{-2} \sum_{\ell} o_p(n^{-1/2}) (\sum_{i} x_{ij} e_{ij}) + o_p(n^{-3/2}) \]

The first term of (30) is \(O_p(B^{-1/2} n^{-1/2})\), and is non-zero due to bootstrap sampling error. In order to force it into the \(o_p(n^{-3/2})\) remainder, \(B\) must satisfy
\[B^{-1/2} n^{-1/2} \Rightarrow B^{-1/2} = o(n^{-1}) \Rightarrow B^{-1} = o(n^{-2}) \]

This assumption is made in the Theorem.

The third term of (30) is \(O_p(B^{-1} n^{-1})\). The large-\(B\) condition is sufficient to replace the bootstrap average.

\[R^{-1} \sum_{\ell=1}^{B}, \text{ by the bootstrap expectation, } E_B, \text{ based on sampling with replacement from the observations } (x_i, y_i), i = 1, \ldots, n. \]

\[b_{\text{boot}} - b = \hat{A}^{-1} n^{-1} B^{-1} \sum_{\ell} \sum_{i} (\hat{A}_{\ell} - \hat{A})\hat{A}^{-1} x_{ij} e_{ij} + o_p(n^{-3/2}) \]
\[- \hat{A}^{-1} n^{-1} B^{-1} \sum_{\ell} \sum_{i} \hat{A}_{\ell}\hat{A}^{-1} x_{ij} e_{ij} - n^{-1} B^{-1} \sum_{\ell} \sum_{i} x_{ij} e_{ij} + o_p(n^{-3/2}) \]
\[- \hat{A}^{-1} n^{-2} B^{-1} \sum_{\ell} \sum_{i} x_{ij} x_{ij} e_{ij} + o_p(n^{-3/2}) \]
\[- \hat{A}^{-1} n^{-1} (E_B x_{ij} x_{ij} \hat{A}^{-1} x_{ij} e_{ij}) + o_p(n^{-3/2}) \]
\[- \hat{A}^{-1} n^{-2} \sum_{i} x_{ij} x_{ij} \hat{A}^{-1} x_{ij} e_{ij} + o_p(n^{-3/2}) \]
\[- \hat{A}^{-1} n^{-1} \sum_{i} x_{ij} p_{ii} e_{ij} + o_p(n^{-3/2}) \]
\[- (b_{c1} - b) + o_p(n^{-3/2}) \]

These equivalences mean that an \(O(n^{-3/2})\) expansion for any one of the BCs will apply to the others.

An expansion for \(H^{-1} b_{c1}\) is obtained next, where
\[H^{-1} b_{c1} = H^{-1} t + H^{-1} \left(\sum_{i} x_{ij} x_{ij} \right)^{-1} \sum_{i} x_{ij} p_{ii} e_{ij} \]
\[- H^{-1} t + H^{-1} \left(\sum_{i} (H')^{-1} z_i z_i (H')^{-1} \right) \sum_{i} (H')^{-1} z_i p_{ii} e_{ij} \]
\[- H^{-1} t + \sum_{i} z_i z_i (H')^{-1} z_i p_{ii} e_{ij} \]

(31)
Substitute the following two results,

\[e_i = y_i - z_i^t H^{-1} b \]
\[y_i - z_i^t (H^{-1} \beta + (H^{-1} b - H^{-1} \beta)) - v_i - z_i^t \Delta_{zz} + o_p(n^{-1/2}) \]

(32)

and

\[p_{ii} = x_i^t \left(\sum x_i x_i^t \right)^{-1} x_i \]
\[= z_i^t H^{-1} \left(\sum z_i z_i^t \right)^{-1} z_i \]
\[= n^{-1} z_i^t \left(I + \Delta_{zz} \right)^{-1} z_i \]
\[= n^{-1} z_i^t (I - \Delta_{zz} + o_p(n^{-1/2})) z_i \]
\[= n^{-1} z_i^t (I - \Delta_{zz} - \Omega_{zz} + o_p(n^{-3/2})) z_i \]

(33)

\[p_{ii} = n^{-1} z_i^t \Delta_{zz} z_i + o_p(n^{-3/2}) \]

(34)

into \(\gamma_i \),

\[H^{-1} b_{c1} - H^{-1} b \]
\[= (I - \Delta_{zz} - \Omega_{zz}) n^{-1} \sum z_i (n^{-1} z_i^t z_i - n^{-1} z_i^t \Delta_{zz} z_i + o_p(n^{-3/2})) (v_i - z_i^t \Delta_{zz} + o_p(n^{-1/2})) \]
\[= n^{-1} \sum z_i z_i^t \Delta_{zz} + o_p(n^{-3/2}) \]
\[= n^{-1} (I - \Delta_{zz} \gamma - n^{-1} \sum z_i (z_i^t \Delta_{zz} z_i)) (v_i - \Omega_{zz} \Delta_{zz} + o_p(n^{-3/2})) \]

(35)

where \(\Delta_{zz} = n^{-1} \sum z_i z_i^t (v_i - \gamma) \). (35) also applies to the other BCs. given the above \(O(n^{-3/2}) \) equivalences.

A.5 Proof of Theorem 4

\[
\text{MSE}(H^{-1} b) = E(H^{-1} b - H^{-1} \beta, (H^{-1} b - H^{-1} \beta)^t) \\
= E\Delta_{zz} \Delta_{zt}^t - E(\Delta_{zz} \Delta_{zt}^t \Delta_{zz} + \Delta_{zz} \Delta_{zt} \Delta_{zt}^t) + E(\Delta_{zz} \Delta_{zt} \Delta_{zt}^t \Delta_{zt} + \Delta_{zt}^t \Delta_{zt} + \Omega_{zz} \Delta_{zz} \Delta_{zt} + \Omega_{zz} \Delta_{zt}^t) + o(n^{-2})
\]

(36)

Most of the expectations in (36) simplify from cross-product terms having zero expectation due to independence and from \(\Delta_{zz} \) and \(\Delta_{zt} \) having mean zero.
(i) The expectation of the first term is

$$E\Delta_{xv}\Delta'_{xv} - n^{-2} F_{xv} n^2 - \Omega_{xv}$$

(ii) For expectations of the next two terms in (36) note that the only nonzero terms in

$$E\Delta_{zz}\Delta_{zz} - n^{-3} E \sum_{ijk} (z_i z'_i - I_i)(z_j v_i')(z_k v_k)$$

occur when $i = k - j$. Therefore

$$E\Delta_{zz}\Delta_{zz} - n^{-2} E (z z' - I)(z' v') - n^{-2} (E(z z' v' v' - (z z' v' v'))$$

$$= n^{-2} (\Omega_{z' z'} - \Omega_{v' v'})$$

The matrices $\Omega_{z' z'}$ and $\Omega_{v' v'}$ are symmetric, therefore

$$E\Delta_{zz}\Delta_{zz} - n^{-2} (\Omega_{z' z'} - \Omega_{v' v'})$$

(iii) The $O(n^{-2})$ terms in

$$E\Delta_{zz}\Delta_{zz} - n^{-4} E \sum_{ijkl} (z_i z'_i - I_i)(z_j v_i')(z_k v_k)(z_l z'_l - I_l)$$

occur when terms are summed according to \{i j k l\}, \{i k j l\}, and \{i l j k\}. The \{i j k l\} sum is

$$n^{-4} E \sum_{ijkl} (z_i z'_i - I_i)(z_j v_i')(z_k v_k)(z_l z'_l - I_l) = n^{-2} (E(z z' - I)(z v') + o(n^{-2}))$$

The \{i j k l\} sum is

$$n^{-4} E \sum_{ijkl} (z_i z'_i - I_i)(z_j v_i')(z_k v_k)(z_l z'_l - I_l) = n^{-2} (E(z z' - I)(z v') + o(n^{-2}))$$

$$- n^{-4} (E(z z' v' v' - (z z' v' v')))$$

$$= n^{-2} (\Omega_{z' z'} - \Omega_{v' v'})$$

$$- n^{-2} (\Omega_{z' z'} - \Omega_{v' v'})$$
\[- n^{-4} F \sum_{i}^{K} (z_{i} z'_{i}) (z_{j} v_{j}) (z_{i} v_{j}) + o(n^{-2});
\]
\[- n^{-4} F \sum_{i}^{K} (z_{i} z'_{i} z_{j} z_{j}) (z_{j} v_{j}) + o(n^{-2});
\]
\[- n^{-2} \sum_{n=1}^{K} \Omega_{zz}^{2} + o(n^{-2});
\]

The \(i - \ell, j - k \) sum is
\[- n^{-4} E \sum_{i} (z_{i} z'_{i} - I)(z_{j} v_{j})(z_{i} z'_{i} - I)
\]
\[- n^{-3} E \sum_{i} (z_{i} z'_{i} - I) \Omega_{z_i} (z_{i} z'_{i} - I) + o(n^{-2});
\]
\[- n^{-3} E \sum_{i} (z_{i} z'_{i} - I) \Omega_{z_i} (z_{i} z'_{i} - I) - n^{-3} E \sum_{i} \Omega_{z_i} (z_{i} z'_{i}) - n^{-3} E \sum_{i} \Omega_{z_i} (z_{i} z'_{i}) \Omega_{z_i} + n^{-3} E \sum_{i} \Omega_{z_i} + o(n^{-2});
\]
\[- n^{-2} \Omega_{zz} (z'_{i} \Omega_{z_i} z) - n^{-2} \Omega_{zz} - n^{-2} \Omega_{zz} + n^{-2} \Omega_{zz} + o(n^{-2});
\]
\[- n^{-2} \Omega_{zz} \Omega_{zz} - n^{-2} \Omega_{zz} + o(n^{-2});
\]

Grouping these sums gives
\[
E \Delta_{zz} \Delta_{zz} \Delta_{zz} = n^{-2} \gamma \gamma + \sum_{n=1}^{K} \Omega_{zz}^{2} + \Omega_{zz} \Omega_{zz} - \Omega_{zz} + o(n^{-2});
\]

(iv) The \(O(n^{-2}) \) part of
\[
E \Delta_{zz} \Delta_{zz} \Delta_{zz} = n^{-4} E \sum_{i} (z_{i} v_{i})(z_{j} v_{j})(z_{k} z'_{k} - I) + o(n^{-2});
\]

is contained in the \((i, j, k, \ell), (i, k, j, \ell), \) and \((i, \ell, j, k) \) terms.
The \((i, j, k, \ell) \) sum is
\[
- n^{-4} E \sum_{i} (z_{i} v_{i})(z_{j} v_{j})(z_{k} z'_{k} - I) + o(n^{-2});
\]
\[
- n^{-2} (E z_{z} v_{z}^{2}) (E z_{z}^{2} v_{z}) - I - I + I + o(n^{-2});
\]
\[
- n^{-2} \Omega_{zz} \Omega_{zz} - I + o(n^{-2});
\]

The \((i, k, j, \ell) \) sum is
\[
- n^{-4} E \sum_{i} (z_{i} v_{i})(z_{j} v_{j})(z_{k} z'_{k} - I) + o(n^{-2});
\]
\[
- n^{-4} E \sum_{i} (z_{i} v_{i})(z_{j} v_{j})(z_{k} z'_{k})(z_{j} z'_{j}) + o(n^{-2});
\]
\[
- n^{-4} E \sum_{ij} (z_i z_j \gamma_{ij} z_{ij}) \gamma_{ij} + o(n^{-2}) \\
- n^{-2} \sum_{a=1}^{K} \Omega_{x,a}^2 \gamma_{a} + o(n^{-2})
\]

The \(\{i = \ell, j = k\}\) sum is

\[
- n^{-4} E \sum_{ij} (z_i z_j \gamma_{ij} z_{ij} (z_j z_j - I)) + o(n^{-2});
\]

\[
- n^{-4} E \sum_{ij} (z_i z_j \gamma_{ij} z_{ij} (z_i z_i - I)) + o(n^{-2});
\]

\[
- n^{-4} E \sum_{ij} z_i z_i \gamma_{ij} (z_j z_j) + o(n^{-2});
\]

\[
- n^{-2} \sum_{a=1}^{K} \Omega_{x,a} \gamma_{a} + o(n^{-2})
\]

where \(\gamma_n\) is the \(n^{th}\) element of \(\gamma\). Grouping these sums gives

\[
E \Delta_{x,v} \Delta'_{x,v} - n^{-2} \Omega_{x,v} (\Omega_{x,v} - I) + \sum_{a=1}^{K} \Omega_{x,a}^2 + \sum_{a=1}^{K} \Omega_{x,a} \gamma_{a} + o(n^{-2})
\]

and

\[
E \Delta_{x,v}^2 \Delta'_{x,v} = n^{-2} (\Omega_{x,v} - I) \Omega_{x,v} + \sum_{a=1}^{K} \Omega_{x,a}^2 + \sum_{a=1}^{K} \Omega_{x,a} \gamma_{a} + o(n^{-2})
\]

Result \(\ref{17}\) follows from substituting expectations \(\{i\} \rightarrow \{iv\}\) into \(\ref{36}\) and simplifying.

For the MSE of \(\widehat{H}_b\), use

\[
\text{MSE}(\widehat{H}_b) = E \left((\widehat{H}_b - H^{-1} \beta)(\widehat{H}_b - H^{-1} \beta)' \right)
\]

\[
+ E (H^{-1} b - H^{-1} b)' (H^{-1} b - H^{-1} b) + (H^{-1} b - H^{-1} b)' (H^{-1} b - H^{-1} b)
\]

\[
+ E (H^{-1} b - H^{-1} b)' (H^{-1} b - H^{-1} b) + \text{MSE}(H^{-1} b)
\]

MSE\((H^{-1} b)\) is given' by \(\ref{17}\). From \(\ref{35}\),

\[
E (H^{-1} b - H^{-1} b)' (H^{-1} b - H^{-1} b) - n^{-2} \gamma \gamma' + o(n^{-2})
\]

The remaining expectations in \(\ref{37}\), \(E (H^{-1} b - H^{-1} b)' (H^{-1} b - H^{-1} b)'\) and its transpose, require five expectations of products of terms that appear in \(\ref{35}\) and \(\ref{7}\). These are

\[
\lim_{n \to \infty} n^{-1} \gamma (-\Delta_{x,v} \Delta_{x,v})' = -n^{-2} \gamma \gamma'
\]
\[
\begin{align*}
\text{En}^{-1} \Delta_z \Delta'_z &= - n^{-3} F \sum_{ij} (z_i' z_i v_i - \gamma) z'_j v_j \\
& \quad - n^{-2} \Omega_{\gamma, v} \\
-\text{En}^{-1} \Delta_z \gamma \Delta'_z &= - n^{-3} F \sum_{ij} (z_i z_i' - I) \gamma) z'_j v_j \\
& \quad - n^{-2} E(z' \gamma) z'_j \\
& \quad - n^{-2} \sum_{i=1}^{K} E(z' \gamma) z_i \gamma_i \\
& \quad - n^{-2} \sum_{i=1}^{K} \Omega_{\gamma, v} \gamma_i \\
-\text{En}^{-2} \sum_{i} (z_i' \Delta_{zz} z_i) v_i \Delta'_z &= - n^{-2} F \sum_{i} (z_i v_i \Delta'_z, z'_i \Delta_{zz} z_i) \\
& \quad - n^{-4} F \sum_{ij} (z_i v_i z_j v_j (z'_i z_k z_k z_i - z'_i z_i) \\
& \quad - n^{-4} F \sum_{ij} (z_i v_i z'_j v_j (z'_i z_j z_j z_i - z'_i z_i) \\
& \quad n^{-4} F \sum_{ij} (z_i v_i z'_j v_j (z'_i z_j)^2 \\
& \quad n^{-4} F \sum_{ij} z_i (z_i v_i z_{ja} z_{ja} v_j) z_j z'_j \\
& \quad n^{-2} \sum_{i=1}^{K} \Omega_{\gamma, v}^2 + o_p(n^{-2}) \\
-\text{En}^{-1} \Omega_{\gamma, z} \Delta_{zz} \Delta'_z &= - n^{-2} \Omega_{\gamma, z} \Omega_{\gamma, v} \\
\end{align*}
\]

(18) follows from substituting these expectations into (37).

A.6 Proof of Theorem 5

To estimate the variance of \(\hat{nBias}(b) \), reparametrize and expand using (32) and (34).

\[
\begin{align*}
\hat{nBias}(b) &= - \hat{A}^{-1} n^{-1} \sum_{i} (x_i (n p_{ii}) e_i \\
& \quad - (H')^{-1} n^{-1} \sum_{i} (H')^{-1} z_i' z_i (z_i' - z'_i \Delta_{zz} z_i + o_p(n^{-1/2}))(v_i - z'_i \Delta_{zt} + o_p(n^{-1/2})) \\
& \quad - H(I - \Delta_{zz} + o_p(n^{-1/2})) H' n^{-1} (H')^{-1} \sum_{i} z_i' z_i v_i - \sum_{i} z_i' z_i z_i' \Delta_{zt} - \sum_{i} z_i' z_i z_i' \Delta_{zz} z_i v_i + o_p(n^{-1/2}) \\
& \quad - H(I - \Delta_{zz}) n^{-1} \sum_{i} z_i' z_i z_i - n^{-1} \sum_{i} z_i' z_i z_i' \Delta_{zt} - n^{-1} \sum_{i} z_i' z_i z_i' \Delta_{zz} z_i v_i + o_p(n^{-1/2}) \\
& \quad - H(I - \Delta_{zz}) (\gamma + \Delta_{\gamma} - \Omega_{\gamma, \gamma} \Delta_{zt} - c) + o_p(n^{-1/2}) \\
\end{align*}
\]
\[- H \gamma - H(\Delta_{zz} - \Omega_{zz} \Delta_{zz} - \gamma - \Delta_{zz} \gamma) + o_p(n^{-1/2}), \]

\[- H \gamma - H \xi_{-1/2} + o_p(n^{-1/2}), \]

where

\[\xi_{-1/2} = \Delta_{zz} - \Omega_{zz} \Delta_{zz} - \gamma - \Delta_{zz} \gamma \]

\[= n^{-1} \sum_i \psi_i, \]

\[\psi_i = z_i z_i' z_i v_i - \gamma - \Omega_{zz} z_i v_i - c_i - (z_i z_i' - I) \gamma \]

\[- z_i z_i' z_i v_i - \Omega_{zz} z_i v_i - c_i - z_i z_i' \gamma, \]

and

\[c_i = n^{-1} \sum_j z_j z_j' (z_j z_j' - I) z_j v_j, \]

so the \(a \)th element of \(v_i \) is

\[\psi_{ia} = n^{-1} \sum_j z_j z_j' v_j - (z_j z_j' - I) v_j \]

\[z_i (n^{-1} \sum_j z_j z_j' z_j a v_j) z_i - \gamma + o_p(n^{-1/2}), \]

\[= z_i z_i' \Omega_{zz} z_i - \gamma + o_p(n^{-1/2}). \]

If the \(\psi_i \)'s and \(H \) were known, a consistent variance estimator could be constructed as

\[\hat{\text{Var}}(n^{1/2}(n \text{Bias}(b))) = n^{-1} \sum_i (H \psi_i')(H \psi_i) \]

(38)

Asymptotic normality of \(n \text{Bias}(b) \) follows from the \(\text{iid} \) assumption. The central limit theorem (White, 1984, p.108), if the variance of \(\psi \) is finite. A sufficient condition for this is that the moments \(E(x^6v^2) \) are finite. Since \(H \) is fixed and nonsingular, this is the same as the moments \(E(x^6v^2) \) being finite. proving part (a).

\[\hat{H} \psi_i \] in (24) uses the following consistent estimators of the four terms of \(H \psi_i \).

\[H z_i z_i' z_i v_i \]

\[- H H' x_i x_i' H H' x_i v_i \]

\[A^{-1} x_i x_i' A^{-1} x_i v_i \]

\[- \hat{A}^{-1} x_i (n p_{ii}) e_i + o_p(1) \]

\[H \Omega_{zz} z_i v_i \]

\[- H (E z z' (z' z) H') z_i v_i \]

\[- H (E H' x x' H H' (x' H H' x)) x_i v_i \]

\[- A^{-1} (E x x' (A^{-1} x) A^{-1}) x_i v_i \]

\[- \hat{A}^{-1} (\hat{A}_{np}) \hat{A}^{-1} x_i e_i + o_p(1) \]
\[
(Hc)_a = \sum_b H_{ab} c_b \\
- \sum_b H_{ab} (z'_b \mathbf{z}_b^v z_i - \gamma_b) \\
- \sum_b H_{ab} (z'_b \mathbf{z}_b^v z_i - \sum_b H_{ab} \mathbf{z}_b (z' z) v_i)
- \sum_b H_{ab} (x'_b H (EH' x x' H (H'_b x) v) H'_i x_i) - \sum_b H_{ab} E((H'_b x) (x' HH' x) v) \\
- x'_i HH' (E x x' (\sum_b H_{ab} H'_b x) v) H'_i x_i - E(x' HH' x (\sum_b H_{ab} H'_b x) v) \\
- x'_i A^{-1} (E x x' ((A^{-1})_a x) v) A^{-1} x_i - E(x' A^{-1} x ((A^{-1})_a x) v) \\
- x'_i A^{-1} (E x x' (\sum_b (A^{-1})_a x_b) v) A^{-1} x_i - E(x' A^{-1} x (\sum_b (A^{-1})_a x_b) v) \\
- x'_i A^{-1} (\sum_b (A^{-1})_a x_b) A^{-1} x_i - (A^{-1})_a \hat{\gamma} + \gamma_n(1)
\]

The new notation is described below (24).

A.7 Computing Expectations and MSEs

Let \(X \) be the usual \(n \times K \) matrix from stacking the \(x'_i \) vectors. The estimators each can be expressed in the form \(\sum_i f(X, x_i) y_i \), where the \(K \)-element vector function \(f \) is

\[
f(X, x_i) = (X' X)^{-1} x_i \\
= (X' X)^{-1} \left(x_i + p_{ii} x_i - (\sum_j x_j x'_j p_{jj}) (X' X)^{-1} x_i \right) \\
= \left(\sum_j x_j x'_j (1 + p_{jj})^{-1} \right)^{-1} x_i (1 + p_{ii}) \\
= \left(\sum_j x_j x'_j (1 - p_{jj})^{-1} \right)^{-1} x_i (1 - p_{jj})^{-1}
\]

where \(B \) is the number of bootstrap samples, \(\ell \) indexes the bootstrap sample, \(j \) indexes the observations in the bootstrap sample, and \((\ell^i_j) \) equals \(i^* \); say, if the \(j^{th} \) observation in the \(\ell^{th} \) bootstrap sample is chosen to be the \((i^*)^{th} \) observation in the original sample.

Let the conditional moments be \(E(y_i | x_i) = \mu(x_i) \) and \(\text{Var}(y_i | x_i) = \tau_i(x_i) \). Then the conditional moments are

\[
E(\hat{\beta} | X) = \sum_i f(X, x_i) \mu(x_i)
\]
\[\text{Var}(\hat{\beta} | X) = \mathbb{E} \left(\left(\hat{\beta} - E(\hat{\beta} | X) \right)^2 \right) \]
\[= \mathbb{E} \left(\sum_i f(X, x_i) (y_i - \mu(x_i))^2 \sum_i f(X, x_i) (y_i - \mu(x_i)) \right) \]
\[= \sum_i f(X, x_i) f(X, x_i)^T \sigma^2(x_i) \]

The unconditional expectation is then
\[E(\hat{\beta}) - E_X(E(\hat{\beta} | X)) \]
where \(E_X \) denotes expectation over \(X \). The unconditional variance is
\[\text{Var}(\hat{\beta}) = E_X(\text{Var}(\hat{\beta} | X)) + E_X[E(\hat{\beta} | X) - \beta]^2 \]

Similarly,
\[\text{MSE}(\hat{\beta}) = E_X(\text{Var}(\hat{\beta} | X)) + E_X[E(\hat{\beta} | X) - \beta]^2 \]

These results can be used to approximate \(E(\hat{\beta}) \), \(\text{Var}(\hat{\beta}) \), and \(\text{MSE}(\hat{\beta}) \) by averaging across simulated \(X \)'s to estimate the \(E_X \) operation. It is not necessary to simulate the \(y \)'s.

A.7.1 Results for Section 5.1: \(x \) takes only two values

The set of possible \(X \)'s is small enough that the bias and RMSE results can be computed directly without simulation. Let the possible values of \(x \) be \(x_1 \) and \(x_2 \), which occur in the population and the sample with \(\text{Pr}(x = x(j)) = p(j), \ j = 1, 2 \). Let the conditional means and variances of \(y \) be \(\mu(j) \) and \(\sigma^2(j) \). Since the order of observations is irrelevant, then \(X \) is fully described by \(\mu \) and \(\hat{\mu}(j) \), which is the proportion of \(x_i \)'s in the sample that equal \(x_1 \). For each of the \(n + 1 \) possible values of \(\hat{\mu}(1); 0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1 \), compute conditional moments
\[E(\hat{\beta} | \hat{\mu}(1), n) = \sum_{j=1}^2 f(\hat{\mu}(1), n, x(j)) \mu(j) I(n \hat{\mu}(1)) \]
\[\text{Var}(\hat{\beta} | \hat{\mu}(1), n) = \sum_{j=1}^2 f(\hat{\mu}(1), n, x(j))^2 \sigma^2(j) I(n \hat{\mu}(1)) \]
where, from the definitions in Section 3.1

\[
\begin{align*}
 f(\hat{p}_{11}; n, x_{(i)}) &= n^{-1}A(\hat{p}_{11})^{-1}x_{(j)}^2 \\
 &- n^{-1}A(\hat{p}_{11})^{-1}x_{(j)} + n^{-2}A(\hat{p}_{11})^{-2} \left(x_{(j)}^2 - \frac{B(\hat{p}_{11})}{A(\hat{p}_{11})} x_{(j)} \right) \quad \text{for } b_{c1} \\
 &= n^{-1} \left(A(\hat{p}_{11}) + n^{-1}B(\hat{p}_{11}) \right)^{-1} \left(x_{(j)} + n^{-1}A(\hat{p}_{11})^{-1}x_{(j)}^3 \right) \quad \text{for } b_{c2} \\
 &= n^{-1}C(\hat{p}_{11})^{-1} \left(x_{(j)}/(1 - n^{-1}x_{(j)}^2 A(\hat{p}_{11})^{-1}) \right) \quad \text{for } b_{c3} \\
 &= 2n^{-1}A(\hat{p}_{11})^{-1}x_{(j)} - n^{-1}x_{(j)} \hat{p}_{ij}^{-1} \sum_{\hat{p}_{11}} \Pr(\hat{p}_{11} | \hat{p}_{11}; n) A(\hat{p}_{11})^{-1} \hat{p}_{ij} \quad \text{for } b_{boot}
\end{align*}
\]

where

\[
\begin{align*}
 A(\hat{p}_{11}) &= \hat{p}_{11}x_{(1)}^2 + \hat{p}_{22}x_{(2)}^2 \\
 B(\hat{p}_{11}) &= \hat{p}_{11}x_{(1)}^4 + \hat{p}_{22}x_{(2)}^4 \\
 C(\hat{p}_{11}) &= -\left(\frac{\hat{p}_{11}x_{(1)}^2}{1 - n^{-1}x_{(1)}^2 A(\hat{p}_{11})^{-1}} \right) + \left(\frac{\hat{p}_{22}x_{(2)}^2}{1 - n^{-1}x_{(2)}^2 A(\hat{p}_{11})^{-1}} \right) \\
 \hat{p}_{11} &= 1 - \hat{p}_{11}
\end{align*}
\]

Since \(\hat{A} \) cannot be singular in this example, \(b_{c1, M} - b_{c1,M} \) and \(b_{boot} - b_{boot,M} \). The above expression for \(b_{boot} \) is derived later in this section. Because of the iid sampling, \(\hat{p}_{11} \) follows a binomial distribution:

\[
\Pr(\hat{p}_{11} | p_{11}; n) = \binom{n}{n_{\hat{p}_{11}}} (\hat{p}_{11})^{n_{\hat{p}_{11}}} (1 - \hat{p}_{11})^{n - n_{\hat{p}_{11}}}
\]

For large \(n \), computational problems were avoided by calculating these probabilities recursively using

\[
\Pr(\hat{p}_{11}) = 0 | p_{11}; n, = (1 - p_{11})^n
\]

and

\[
\Pr(\hat{p}_{11} + n^{-1} | p_{11}, n) = \Pr(\hat{p}_{11} | p_{11}, n) \left(\frac{1 - \hat{p}_{11}}{\hat{p}_{11} + n^{-1}} \right) \left(\frac{p_{11}}{1 - p_{11}} \right)
\]

The moments are then computed as

\[
\begin{align*}
 E(\hat{\beta}) &= \sum_{\hat{p}_{11}} \Pr(\hat{p}_{11}) E(\beta | \hat{p}_{11}) \\
 \text{Var}(\hat{\beta}) &= \sum_{\hat{p}_{11}} \Pr(\hat{p}_{11}) \text{Var}(\beta | \hat{p}_{11}) + \left(E(\beta | \hat{p}_{11}) - E(\beta) \right)^2 \\
 \text{MSE}(\hat{\beta}) &= \sum_{\hat{p}_{11}} \Pr(\hat{p}_{11}) \left(\text{Var}(\beta | \hat{p}_{11}) + \left(E(\beta | \hat{p}_{11}) - \beta \right)^2 \right)
\end{align*}
\]

The \(f(\hat{p}_{11}; n, x_{(j)}) \) expression for \(b_{boot} \) given above follows from \(b_{R} \) in (12) being the expectation of OLS under iid sampling from the empirical distribution. Let \(\hat{p}_{11} \) be the proportion of observations in a bootstrap sample having \(x_{(j)} = x_{(1)} \), and compute \(\Pr(\hat{p}_{11} | \hat{p}_{11}; n) \) in the same way as the \(\Pr(\hat{p}_{11} | p_{11}; n) \)'s described.
earlier. Then applying the procedure just described for \(t \) to the empirical distribution gives

\[
E(b_{\text{boot}} p_{(1)}; \tilde{p}_{(1)}, u_{(j)}; n, n') \sum_{\tilde{p}_{(1)}} \Pr(\tilde{p}_{(1)}|\tilde{p}_{(1)}, n) \left(\sum_{j} \left(n^{-1} A(\tilde{p}_{(1)})^{-1} x_{(j)} \tilde{\mu}_{(j)} \right) n \tilde{p}_{(j)} \right)
\]

where \(\tilde{\mu}_{(j)} = \sum_{\{i|x_i=x_{i\prime}\}} y_i / (n \tilde{p}_{(j)}) \). Therefore

\[
E(b_{\text{boot}} p_{(1)}; \tilde{p}_{(1)}, u_{(j)}; \tilde{\mu}_{(j)}; n') \sum_{\tilde{p}_{(1)}} \Pr(\tilde{p}_{(1)}|\tilde{p}_{(1)}, n') \left(\sum_{j} \left(n^{-1} A(\tilde{p}_{(1)})^{-1} x_{(j)} \tilde{p}_{(j)} \right) y_i / (n \tilde{p}_{(j)}) \right)
\]

\[
- \sum_{\tilde{p}_{(1)}} \Pr(\tilde{p}_{(1)}|\tilde{p}_{(1)}, n') \sum_{j} \left(n^{-1} A(\tilde{p}_{(1)})^{-1} x_{(j)} \right) \tilde{p}_{(j)} / (\tilde{p}_{(j)}) \left(\sum_{\{i|x_i=x_{i\prime}\}} y_i \right)
\]

\[
- \sum_{i} f_B(\tilde{p}_{(1)}, n, x_{(j)}) y_i
\]

where \(f_E(\tilde{p}_{(1)}, n, x_{(j)}) = \sum_{\tilde{p}_{(1)}} \Pr(\tilde{p}_{(1)}|\tilde{p}_{(1)}, n) n^{-1} A(\tilde{p}_{(1)})^{-1} x_{(j)} \tilde{p}_{(j)} / (\tilde{p}_{(j)}) \). Values of zero can occur in the denominators in the computations for \(b_{3} \) and \(b_{\text{boot}} \), but they always have zero-probability outcomes, so they can be replaced with an arbitrary non-zero number. Finally, assume that the number of bootstrap replications is large enough that the bootstrap sampling error, \(\tilde{b}_{B} = E(b_{\text{boot}} p_{(1)}; \tilde{p}_{(1)}, u_{(j)}; \tilde{\mu}_{(j)}; n) \), can be ignored.

A.8 The ncp used in Sections 5.1.4 and 5.1.5

Test the restriction \(\beta_0 = \beta \) in the augmented model \(y = \beta_0 + x \beta + v^* \) using a Wald test, allowing \(\text{Var}(v^*|x = x_{(j)}) = \sigma_j^2 \) to depend on \(x \). Under the local alternative \(\beta \sim n^{-1/2} \tau \) for some fixed \(\tau \), the asymptotic distribution of this Wald statistic is noncentral \(\chi^2 \) with an \(ncp \)

\[
\text{ncp} = \frac{\tau^2}{\text{AVar}(n^{1/2} \tilde{\beta}_0)}
\]

where, with \(x_{(1)} = 1 \) and \(x_{(2)} = a \),

\[
\beta_{0} \sim n^{-1/2} \tau \quad \frac{a \mu_1}{x_2 - 1} \mu_2
\]

\[
\text{AVar}(n^{1/2} \tilde{\beta}_0) = \left(p + (1 - p)a^2 \right)^2 \left(\sigma_1^2 + (1 - p) \sigma_2^2 \right)
\]

\[
-2(p + (1 - p)a^2)(p \sigma_1^2 + (1 - p) \sigma_2^2)
\]

\[
+(p \sigma_1^2 + (1 - p) a^2 \sigma_2^2)(p + (1 - p)a^2)/(p + (1 - p)a^2 - p + (1 - p)a)^2)
\]

and \(\tilde{\beta}_0 \) is the OLS estimator of the intercept.
A.9 The ncp used in Sections 5.2 and 5.3

Under the local alternative $\theta - \text{a}^{-1/2}\tau$ for some fixed a, the asymptotic distribution of a heteroskedasticity-consistent Wald statistic is noncentral χ^2 with non-centrality parameter

$$ncp = \frac{\tau^2}{\text{AVar}(n^{1/2}\hat{\theta})}$$

where $\text{AVar}(n^{1/2}\hat{\theta})$, is element (3,3) of $E(\tilde{\alpha}\tilde{\alpha})^{-1}E(\tilde{\alpha}u^2)E(\tilde{\alpha})^{-1}$ and $\tilde{\alpha} = [1 \ x^* (x^*)^2]^T$ is the regressor vector from an augmented linear regression model described earlier. b is the third element of $E(\tilde{\alpha} \tilde{\alpha})^{-1}E(\tilde{\alpha}y)$. The moment result $Ex^T - r1\phi^T$ for x an exponential random variable with mean ϕ, lead to the moment matrices given below. Set $\beta_1 = 0$ with no loss of generality.

$$E\tilde{\alpha}\tilde{\alpha} = \begin{bmatrix}
1 & p\text{(1)} + p\text{(2)}a & 2(p\text{(1)} + p\text{(2)}a^2) \\
p\text{(1)} + p\text{(2)}a & 2(p\text{(1)} + p\text{(2)}a^2) & 6(p\text{(1)} + p\text{(2)}a^3) \\
2(p\text{(1)} + p\text{(2)}a^2) & 6(p\text{(1)} + p\text{(2)}a^3) & 24(p\text{(1)} + p\text{(2)}a^4)
\end{bmatrix}$$

$$E\tilde{\alpha}y = \begin{bmatrix}
\alpha \\
p\text{(2)}\beta_2 \\
2a^2 \\
6a^2
\end{bmatrix}$$

Element $[b,c]$ of the 3×3 matrix $E\tilde{\alpha}\tilde{\alpha}u^2$ is given by

$$E(x^*)^Ty^2 - r!(p\text{(1)}\sigma^2_{11} + p\text{(2)}\sigma^2_{22}a^r)$$

where $r - b + c - 2$. The size of the ncp is controlled by adjusting β_2.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 124</td>
<td>Exploring the Use of a Nonparametrically Generated Instrument Variable in the Estimation of a Linear Parametric Equation</td>
<td>F.T. Denton</td>
</tr>
<tr>
<td>No. 125</td>
<td>Borrowing Constraints, The Cost of Precautionary Saving, and Unemployment Insurance</td>
<td>T.F. Crossley, H.W. Low</td>
</tr>
<tr>
<td>No. 126</td>
<td>Entry Costs and Stock Market Participation Over the Life Cycle</td>
<td>S. Alan</td>
</tr>
<tr>
<td>No. 127</td>
<td>Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel</td>
<td>V. Hildebrand, P. Van Kerm</td>
</tr>
<tr>
<td>No. 128</td>
<td>Where Have All The Home Care Workers Gone?</td>
<td>M. Denton, I.U. Zeytinoglu, S. Davies, D. Hunter</td>
</tr>
<tr>
<td>No. 130</td>
<td>Does One Size Fit All? The CPI and Canadian Seniors</td>
<td>M. Brzozowski</td>
</tr>
<tr>
<td>No. 131</td>
<td>Unexploited Connections Between Intra- and Inter-temporal Allocation</td>
<td>T.F. Crossley, H.W. Low</td>
</tr>
<tr>
<td>No. 132</td>
<td>Grandparents Raising Grandchildren in Canada: A Profile of Skipped Generation Families</td>
<td>E. Fuller-Thomson</td>
</tr>
<tr>
<td>No. 133</td>
<td>Measurement Errors in Recall Food Expenditure Data</td>
<td>N. Ahmed, M. Brzozowski, T.F. Crossley</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>No. 135:</td>
<td>Population Aging and the Macroeconomy: Explorations in the Use of Immigration as an Instrument of Control</td>
<td>F. T. Denton, B. G. Spencer</td>
</tr>
<tr>
<td>No. 137:</td>
<td>MEDS-D USERS’ MANUAL</td>
<td>F.T. Denton, C.H. Feaver, B.G. Spencer</td>
</tr>
<tr>
<td>No. 138:</td>
<td>MEDS-E USERS’ MANUAL</td>
<td>F.T. Denton, C.H. Feaver, B.G. Spencer</td>
</tr>
<tr>
<td>No. 139:</td>
<td>Socioeconomic Influences on the Health of Older Canadians: Estimates Based on Two Longitudinal Surveys (Revised Version of No. 112)</td>
<td>N.J. Buckley, F.T. Denton, A.L. Robb, B.G. Spencer</td>
</tr>
<tr>
<td>No. 140:</td>
<td>Developing New Strategies to Support Future Caregivers of the Aged in Canada: Projections of Need and their Policy Implications</td>
<td>J. Keefe, J. Légaré, Y. Carrière</td>
</tr>
<tr>
<td>No. 142:</td>
<td>Welfare Restructuring without Partisan Cooperation: The Role of Party Collusion in Blame Avoidance</td>
<td>M. Hering</td>
</tr>
<tr>
<td>No. 143:</td>
<td>Ethnicity and Health: An Analysis of Physical Health Differences across Twenty-one Ethnocultural Groups in Canada</td>
<td>S. Prus, Z. Lin</td>
</tr>
<tr>
<td>No. 144:</td>
<td>The Health Behaviours of Immigrants and Native-Born People in Canada</td>
<td>J.T. McDonald</td>
</tr>
<tr>
<td>No. 145:</td>
<td>Ethnicity, Immigration and Cancer Screening: Evidence for Canadian Women</td>
<td>J.T. McDonald, S. Kennedy</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>147</td>
<td>The Portfolio Choices of Hispanic Couples</td>
<td>D.A. Cobb-Clark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V.A. Hildebrand</td>
</tr>
<tr>
<td>149</td>
<td>Joint Taxation and the Labour Supply of Married Women: Evidence from the Canadian Tax Reform of 1988</td>
<td>T.F. Crossley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.H. Jeon</td>
</tr>
<tr>
<td>150</td>
<td>What Ownership Society? Debating Housing and Social Security Reform in the United States</td>
<td>D. Béland</td>
</tr>
<tr>
<td>151</td>
<td>Home Cooking, Food Consumption and Food Production among the Unemployed and Retired Households</td>
<td>M. Brzozowski</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y. Lu</td>
</tr>
<tr>
<td>152</td>
<td>The Long-Run Cost of Job Loss as Measured by Consumption Changes</td>
<td>M. Browning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T.F. Crossley</td>
</tr>
<tr>
<td>153</td>
<td>Do the Rich Save More in Canada?</td>
<td>S. Alan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Atalay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T.F. Crossley</td>
</tr>
<tr>
<td>154</td>
<td>Income Inequality over the Later-life Course: A Comparative Analysis of Seven OECD Countries</td>
<td>R.L. Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.G. Prus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Pendakur</td>
</tr>
<tr>
<td>156</td>
<td>The Top Shares of Older Earners in Canada</td>
<td>M.R. Veall</td>
</tr>
<tr>
<td>157</td>
<td>Le soutien aux personnes âgées en perte d’autonomie: jusqu’où les baby-boomers pourront-ils compter sur leur famille pour répondre à leurs besoins ?</td>
<td>J. Légaré</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Alix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y. Carrière</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Keefe</td>
</tr>
<tr>
<td>158</td>
<td>Les générations X et Y du Québec, vraiment différentes des précédentes ?</td>
<td>J. Légaré</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Ménard</td>
</tr>
<tr>
<td>159</td>
<td>La diversification et la privatisation des sources de revenu de retraite au Canada</td>
<td>L. Mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Légaré</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. Stone</td>
</tr>
<tr>
<td>159</td>
<td>The Diversification and the Privatization of the Sources of Retirement Income in Canada</td>
<td>L. Mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Légaré</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. Stone</td>
</tr>
<tr>
<td>160</td>
<td>Evaluating Pension Portability Reforms: The Tax Reform Act of 1986 as a Natural Experiment</td>
<td>V. Andrietti</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V.A. Hildebrand</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>No. 163:</td>
<td>Tax Incentives and Household Portfolios: A Panel Data Analysis</td>
<td>S. Alan, S. Leth-Petersen</td>
</tr>
<tr>
<td>No. 164:</td>
<td>The Healthy Immigrant Effect and Immigrant Selection: Evidence from Four Countries</td>
<td>S. Kennedy, J.T. McDonald, N. Biddle</td>
</tr>
<tr>
<td>No. 165:</td>
<td>Well-Being Throughout the Senior Years: An Issues Paper on Key Events and Transitions in Later Life</td>
<td>M. Denton, K. Kusch</td>
</tr>
<tr>
<td>(2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 169:</td>
<td>Gender Inequality in the Wealth of Older Canadians</td>
<td>M. Denton, L. Boos</td>
</tr>
<tr>
<td>No. 170:</td>
<td>The Evolution of Elderly Poverty in Canada</td>
<td>K. Milligan</td>
</tr>
<tr>
<td>No. 171:</td>
<td>Return and Onwards Migration among Older Canadians: Findings from the 2001 Census</td>
<td>K.B. Newbold</td>
</tr>
<tr>
<td>No. 172:</td>
<td>Le système de retraite américain: entre fragmentation et logique financière</td>
<td>D. Béland</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>No. 173</td>
<td>Entrepreneurship, Liquidity Constraints and Start-up Costs</td>
<td>R. Fonseca</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.-C. Michaud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Sopraseuth</td>
</tr>
<tr>
<td>No. 174</td>
<td>How did the Elimination of the Earnings Test above the Normal Retirement Age affect Retirement Expectations?</td>
<td>P.-C. Michaud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. van Soest</td>
</tr>
<tr>
<td>No. 175</td>
<td>The SES Health Gradient on Both Sides of the Atlantic</td>
<td>J. Banks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Marmot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z. Oldfield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.P. Smith</td>
</tr>
<tr>
<td>No. 176</td>
<td>Pension Provision and Retirement Saving: Lessons from the United Kingdom</td>
<td>R. Disney</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Emmerson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Wakefield</td>
</tr>
<tr>
<td>No. 177</td>
<td>Retirement Saving in Australia</td>
<td>G. Barrett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y.-P. Tseng</td>
</tr>
<tr>
<td>No. 178</td>
<td>The Health Services Use Among Older Canadians in Rural and Urban Areas</td>
<td>H. Conde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.T. McDonald</td>
</tr>
<tr>
<td>No. 179</td>
<td>Older Workers and On-the-Job Training in Canada: Evidence from the WES data</td>
<td>I.U. Zeytinoglu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.B. Cooke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K. Harry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Kpessa</td>
</tr>
<tr>
<td>No. 181</td>
<td>Age, SES, and Health: A Population Level Analysis of Health Inequalities over the Life Course</td>
<td>S. Prus</td>
</tr>
<tr>
<td>No. 182</td>
<td>Ethnic Inequality in Canada: Economic and Health Dimensions</td>
<td>E.M. Gee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K.M. Kobayashi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.G. Prus</td>
</tr>
<tr>
<td>No. 183</td>
<td>Home and Mortgage Ownership of the Dutch Elderly: Explaining Cohort, Time and Age Effects</td>
<td>A. van der Schors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R.J.M. Alessie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Mastrogiacomo</td>
</tr>
<tr>
<td>No. 184</td>
<td>A Comparative Analysis of the Nativity Wealth Gap</td>
<td>T.K. Bauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D.A. Cobb-Clark</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. Hildebrand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Sinning</td>
</tr>
<tr>
<td>No. 185</td>
<td>Cross-Country Variation in Obesity Patterns among Older Americans and Europeans</td>
<td>P.C. Michaud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. van Soest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Andreyeva</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>No. 186</td>
<td>Which Canadian Seniors Are Below the Low-Income Measure?</td>
<td>M.R. Veall</td>
</tr>
<tr>
<td>No. 187</td>
<td>Policy Areas Impinging on Elderly Transportation Mobility: An Explanation with Ontario, Canada as Example</td>
<td>R. Mercado, A. Páez, K. B. Newbold</td>
</tr>
<tr>
<td>No. 188</td>
<td>The Integration of Occupational Pension Regulations: Lessons for Canada</td>
<td>M. Hering, M. Kpessa</td>
</tr>
<tr>
<td>No. 189</td>
<td>Psychosocial resources and social health inequalities in France: Exploratory findings from a general population survey</td>
<td>F. Jusot, M. Grignon, P. Dourgnon</td>
</tr>
<tr>
<td>No. 190</td>
<td>Health-Care Utilization in Canada: 25 Years of Evidence</td>
<td>L.J. Curtis, W.J. MacMinn</td>
</tr>
<tr>
<td>No. 191</td>
<td>Health Status of On and Off-reserve Aboriginal Peoples: Analysis of the Aboriginal Peoples Survey</td>
<td>L.J. Curtis</td>
</tr>
<tr>
<td>No. 192</td>
<td>On the Sensitivity of Aggregate Productivity Growth Rates to Noisy Measurement</td>
<td>F.T. Denton</td>
</tr>
<tr>
<td>No. 193</td>
<td>Initial Destination Choices of Skilled-worker Immigrants from South Asia to Canada: Assessment of the Relative Importance of Explanatory Factors</td>
<td>L. Xu, K.L. Liaw</td>
</tr>
<tr>
<td>No. 196</td>
<td>Characterization and Explanation of the 1996-2001 Inter-CMA Migration of the Second Generation in Canada</td>
<td>L. Xu</td>
</tr>
<tr>
<td>No. 197</td>
<td>Transitions out of and back to employment among older men and women in the UK</td>
<td>D. Haardt</td>
</tr>
<tr>
<td>No. 198</td>
<td>Older couples’ labour market reactions to family disruptions</td>
<td>D. Haardt</td>
</tr>
<tr>
<td>No. 199</td>
<td>The Adequacy of Retirement Savings: Subjective Survey Reports by Retired Canadians</td>
<td>S. Alan, K. Atalay, T.F. Crossley</td>
</tr>
<tr>
<td>No. 200</td>
<td>Underfunding of Defined Benefit Pension Plans and Benefit Guarantee Insurance - An Overview of Theory and Empirics</td>
<td>M. Jametti</td>
</tr>
<tr>
<td>No. 201</td>
<td>Effects of ‘authorized generics’ on Canadian drug prices</td>
<td>P. Grootendorst</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>No. 202</td>
<td>When Bad Things Happen to Good People: The Economic Consequences of Retiring to Caregive</td>
<td>P.L. McDonald, T. Sussman, P. Donahue</td>
</tr>
<tr>
<td>No. 203</td>
<td>Relatively Inaccessible Abundance: Reflections on U.S. Health Care</td>
<td>I.L. Bourgeault</td>
</tr>
<tr>
<td>No. 204</td>
<td>Professional Work in Health Care Organizations: The Structural Influences of Patients in French, Canadian and American Hospitals</td>
<td>I.L. Bourgeault, I. Sainsaulieu, P. Khokher, K. Hirschkorn</td>
</tr>
<tr>
<td>No. 205</td>
<td>Who Minds the Gate? Comparing the role of non physician providers in the primary care division of labour in Canada & the U.S.</td>
<td>I.L. Bourgeault</td>
</tr>
<tr>
<td>No. 206</td>
<td>Immigration, Ethnicity and Cancer in U.S. Women</td>
<td>J.T. McDonald, J. Neily</td>
</tr>
<tr>
<td>No. 207</td>
<td>Ordinary Least Squares Bias and Bias Corrections for iid Samples</td>
<td>L. Magee</td>
</tr>
</tbody>
</table>